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DEEP LEARNING AIDED DATA DETECTION
FOR FUTURE WIRELESS COMMUNICATION SYSTEMS

SUMMARY

The demand for reliable, fast and effective wireless communication methods go on
with the growing trend thanks to new applications which have challenging technical
requirements. In this sense, orthogonal frequency division multiplexing (OFDM)
with multiple numerologies concept has been proposed to meet the requested key
performance indicators of fifth generation (5G) wireless networks by Third Generation
Partnership Project (3GPP). Although OFDM has solid advantages, e.g., simple
equalization, robustness to frequency selective fading and easy implementation,
the inabilities of OFDM such as high out-of-band (OOB) emission and high
peak-to-average power ratio (PAPR), make it quite disputable to meet the expectations
from the physical layer (PHY) of future wireless access technologies. Therefore,
improved PHY techniques need to be developed for beyond 5G wireless networks.
Generalized frequency division multiplexing (GFDM) is one of the notable attempts
to cope with the challenges of future wireless networks. GFDM provides advantages
in terms of latency, spectral efficiency, and OOB emission because of block-based
structure, reduced overhead of cyclic prefix (CP) and subcarrier-based digital pulse
shaping, respectively. The featured benefit of GFDM is the flexibility that enables
time-frequency engineering according to the requirements of the target application.
Index modulation (IM) techniques offer energy and spectral efficiency by utilizing
transmission entities to convey digital information innovatively. Also, multiple-input
multiple-output (MIMO) has an important ability for a PHY scheme to match the
foreseen requirements beyond the 6G.

Deep learning has lately attracted important attention because of its high performance
to solve computationally-burdened problems in various fields such as object detection,
recommendation systems, and computer vision. Considering the unprecedented
success of deep learning in various problems, researchers are eagerly attempting to
exploit it for wireless communication.

In this thesis, GFDM, GFDM with IM and Spatial Multiplexing (SMX) with IM
scheme has been examined and novel receiver schemes have been proposed in order to
meet the next generation’s physical layer requirements.

In the first stage of the thesis, general concepts about the data detection method for
wireless networks and deep learning methods undertaking in this thesis are explained
shortly.

In the second stage of the thesis, deep learning-aided joint detection and demodulation
(JDD) scheme is proposed for GFDM scheme. Detection and demodulation of the
GFDM blocks include coarse and fine detection stages, which are implemented by
using a linear detector and a neural network in a cascaded manner. This application
would be the first attempt to exploit a neural network for GFDM detection. Besides,

Xxi



minimum mean-squared error (MMSE) detector is proposed for the coarse detection
stage of the cascaded approach. Furthermore, a convolutional neural network (CNN)
is exploited to handle complex signals, i.e., quadrature amplitude modulation (QAM)
signals, through fully-connected neural network (FCNN). deep learning-aided JDD
provides bit error ratio (BER) improvement compared to classical linear detectors.

In the third stage of the thesis, a novel deep convolutional neural network-based
detector (DeepConvIM) is proposed for GFDM-IM scheme in order to reduce the
complexity while improving error performance. The proposed detector first applies ZF
detector to the received signal and then uses a neural network, which is composed of
a CNN and an FCNN, to recover the transmitted information from the noisy channel
outputs. This two-stage approach prevents the getting stuck of neural networks in
a saddle point and enables IM blocks processing independently. Also, the FCNN
part has only two fully-connected layers, which can be adapted to yield a trade-off
between complexity and BER performance. Besides, the CNN has three important
advantages that can help improve a deep learning model in terms of sparse interactions,
parameter sharing, and equivalent representations. The proposed method would be the
first attempt to exploit a neural network for GFDM-IM detection. Furthermore, a CNN
approach is used to detect IM scheme for the first time. It has been demonstrated that
the DeepConvIM provides essential BER improvement compared to ZF detector with
a reasonable complexity increase.

In the fourth stage of the thesis, deep learning-aided data detection of SMX
multiple-input multiple-output MIMO transmission with IM (Deep-SMX-IM) has
been proposed in order to improve error performance without increasing complexity.
Deep-SMX-IM has been constructed by combining ZF detector and DL technique.
The main contribution of this proposed method is to use CNN and FCNN to learn
the transmission characteristics of spatial and frequency multiplexing, respectively.
Note that, a CNN approach provides a flexible structure for SMX transmission thanks
to supporting the multi-channel operation and preserving the spatial dependence.
Besides, using IM enables to implement subblock-based detection, which simplifies
the DL model and reduces the complexity. The proposed method would be the
first appearance to implement DL-aided SMX with IM (SMX-IM) detection. The
Deep-SMX-IM provides important BER improvement compared to ZF detector
without increasing complexity.

In this thesis, deep learning-aided JDD for GFDM, DeepConvIM for GFDM-IM
and Deep-SMX-IM for SMX-IM have been proposed. All proposed models provide
significant BER performance but while deep learning-aided JDD has the highest
complexity, Deep-SMX-IM has the lowest complexity. The use of index modulation
techniques in deep learning-aided detection methods ensures that deep learning-aided
models are of low complexity. Furthermore, the combination of SMX and IM ensures
that the complexity remains almost the same compared to the linear detector. It has
been concluded that significant advantages of deep learning techniques should be
engineered to overcome the challenges of wireless communications arising from the
distinct characteristics of time, frequency and spatial domains.
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GELECEK NESIL TELSIiZ HABERLESME SISTEMLERI ICIN
DERIN OGRENME YARDIMIYLA DATA TESPITI

OZET

Giivenilir hizli ve efektif telsiz haberlesme yontemleri teknik agidan zorluklara
sahip yeni uygulamalar ile gelisen bir alan olarak devam etmektedir.  Bu
cercevede 5. nesil telsiz haberlesme aglarinin mevcut teknik zorluklarimi karsilamak
amach coklu parametre kiimesine sahip dik frekans bolmeli ¢ogullama (orthogonal
frequency division multiplexing, OFDM) istenen performanslari karsilamak amaciyla
Onerilmistir. Ancak telsiz haberlesme kullanicilar1 ve uygulamalari sayilarinda goriilen
artig egilimi nedeniyle OFDM tabanli bir fiziksel katmanin yeterliligi yeni nesil fiziksel
katman teknikleri i¢in tartismalidir. Bu nedenden dolay1 5. nesil sonras1 haberlesme
sistemleri i¢in yeni telsiz haberlesme yontemlerine ihtiya¢ duyuldugu konusunda
yaygin bir diisiince bulunmaktadir.

Genellestirilmis Frekans Bolmeli Cogullama (Generalized Frequency Division
Multiplexing, GFDM), son yillarda 6ne ¢cikmig gelecek nesil haberlesme sistemlerinin
zorluklariyla basa ¢ikmak icin On goriilen bir fiziksel katman teknigidir. GFDM zaman
frekans kaynag1 planlamasina izin vermesiyle iletim gecikmesine karsi, diisiiriilmiis
cevrimsel Onek (cyclic prefix) ile uzaysal verimlilige karsi, her alttasiyicinin bir
stizgecten gecirilmesiyle OOB yayilima kars1 ¢6ziim getirmektedir.

Indis Modiilasyonu (index modulation, IM) modiilasyonu spektrum ve uzaysal
verimliligi nedeniyle oldukca ilgi gormiis basit bir sayisal modiilasyon teknigidir.
Geleneksel sayisal modiilasyonlarin tersine, IM iletisim sisteminin yapitaglari olan
anten, zaman dilimi gibi bilgilerin var olup olmamasini kullanarak bilgi iletimi yapar.
Uzaysal modulasyon bilgi iletmek i¢in antenleri kullanirken, OFDM-IM sistemlerde
alt tasiyict pozisyonlarinin var/yok mekanizmasiyla bilgi iletimi i¢in kullanilir. Buna
gore bazi alt tagiyicilar kullanilmaz. Bu sayede kullanilmayan alt tasiyicilarin
enerjileri, kullanilan alt tastyicilara aktarilarak bit bagina diisen enerji miktar: artirilir
ve bit hata oran1 bagariminda artig saglanir.

Giin gectikce artan veri hizi ve kullanict sayisi, frekans spektrumundaki sinirhilik
nedeniyle arastirmacilari spectral verimligi artirmak i¢in ¢dziim yollarina yoneltmistir.
Cok girisli ¢cok cikigh sistemler (multiple input multiple output, MIMO) buna ¢oziim
olarak sunulan yenilik¢i bir yaklagimdir. MIMO sistemlerde alic1 ve verici tarafta es
zamanh c¢oklu anten kiimesini kullanarak iletim ve alim yapar. Herhangi bir band
genisligi ve yiiksek iletim giicli olmadan yiiksek kanal kapasitesi ve yiiksek hiz oram
sunar. Yeni nesil fiziksel katman ¢oziimleri i¢in spektral verimlilige sahip MIMO
iletim teknikleri ile ¢aligsabilmek bir gerekliliktir.

Kablosuz haberlesmede yasanan tiim bu gelismelerin yaninda, c¢esitli modulasyon
tekniklerine ve dalga formlarina gore gonderilen verinin alici tarafta tespit edilmeside
yeni nesil haberlesme sistemlerinde gelistirilmesi gerekli bir konu haline gelmistir.
En biiyiik olabilirlik yontemi en optimum yoOntemi sunsa da karmasikli§1 oldukc¢a
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yiiksektir. Dogrusal tespit yontemleri karmasikligi diisiik sonuglar sunar, ancak
bagsarimi en bilyiik olabirlik yontemine gore oldukca diisiiktiir. Bu kapsamda yeni
nesil kablosuz haberlesme sistemlerinde alic1 dizayninda karmasiklig1 diisiik basarimi
yiiksek alict modellerine ihtiyag¢ vardir.

Makine 68renmesi bilgisayar biliminin hizla gelisen alanlarindan biridir. En basit
haliyle verilerden otomatik olarak pattern ¢ikarma islemi olarak tanimlanir. Derin
O0grenme ise makine Ogrenmesinin alt alanlarindan biridir. Son 10 yilda internet
erisimin artmasiyla toplanan verilerin miktar1 artmistir. Bu daha fazla islem giicii
gerektiren bilgisayarlara ve 6grenme kapasitesi yiiksek algoritmalara olan ihtiyact
artirmigtir. Bu kapsamda grafik iglem birimlerinin (graphical user interrface, GPU)
hesaplamalarda kullanilmasi ve yeni algoritmalarin gelistirilmesiyle derin 6grenme
alaninda oldukg¢a ilerleme saglanmis, nesne tespiti dogal dil isleme bilgisayarl gorii
gibi alanlarda ciddi gelismeler olmugtur. Derin sinir aglarim1 (deep neural network,
DNN) algoritmalarin en baginda tam baglanmis sinir ag1 (fully connected neural
network, FCNN) gelmektedir. FCNN herhangi bir durum hafizasi icermeyen giristen
cikisa kadar ileriye dogru yol iceren neural networklardir. FCNN yaninda, resim
gibi yerel degerlendirme istenilen uygulamalar i¢in evrisimsel sinir ag1 (convolutional
neural network, CNN) gelistirilmistir. CNN uzay boyunca agirliklar1 paylasir, bu da
FCNN gore daha az parametre ile islem yapilmasini saglar. Zamana baglilig1 olan
veriler i¢in ise durum hafiza bilgisi tutan yineleyen sinir ag1 (recurrent neural network,
RNN) gelistirilmistir. RNN’ler ise zamansal boyutta agirliklarini paylagir.

Tiim bu gelismelerin yaninda derin 6grenme telsiz haberlesme iginde ilgi cekici bir
alan haline gelmistir. Arastirmacilarin ilgisini cekmis, kanal tahmini, kanal kodlama,
OFDM alicilar ve MIMO tespiti ile ilgili calismalar yapilmistir.

Bu tezde gelecek nesil fiziksel katman gereklilerini karsilamak amaciyla veri
tespiti uygulamalar1 lizerine caligilmistir.  Yeni nesil fiziksel katman ¢oziimlerine
onemli bir yer sahip ortogonal ve non-orthogonal dalga formalarinin tespiti iizerine
odaklanilmigtir. Spektral ve enerji verimliligi nedeniyle 6ne ¢ikan IM ve spectral
verimligi sayesinde one ¢ikan MIMO icin data tespiti tizerine ¢alistlmigtir. Yeni alic
tasarimi Onerilmisgtir.

Tezin ilk asamasinda geleneksel veri tespit yontemlerinden olan en biiyiik olabilirlik
yontemi ve lineer tespit yOontemlerinden ve bu tezde uygulanan derin 68renme
destekli yapilacak kablosuz haberlesme calismasinda kullanilan genel asamalardan
bahsedilmigtir. Bu asamalar egitim ve test datasinin iiretilmesi, derin Ogrenme
modelinin olusturulmasi, egitimin gerceklesmesi ve test asamasidir.

Tezin ikinci asamasinda GFDM tespiti i¢in derin 6grenme yardimiyla iki katmanli alici
yapist Onerilmistir. Bu alic1 tarafi ana detektor ve yardimcr detektor kisimlarindan
olugsmaktadir. Ana tespit kisminda klasik tespit yontemleri kullanilirken yardimci
tespit kisminda derin 6grenme kismi kullanilmigtir. Derin 6grenme yardimiyla yapilan
ilk GFDM uygulamasidir. Derin 68renme ¢ercevelerinin kompleks sayilar tarafindan
desteklenmemesi nedeniyle evrisimsel sinir ag1 buna ¢oziim olarak sunulmustur. Ayni
zamanda ana tespit kisminda MMSE kullanilmasi derin 6grenme yardimiyla yapilan
ilk uygulamalardandir. Bu uygulamanin sagladigi bit hata orani (bit error rate, BER)
basarimi iyi olsa da derin 6grenme kismi oldukca kompleks bir katman yapisina
saglanmisgtir.
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Tezin ticlincii asamasinda GFDM-IM i¢in bit hata oraninm gelistirecek derin evrigimsel
neural network bazli tespit ve demodulation modeli dnerilmistir. Onerilen sistem ilk
basta alinan sinyali sifir zorlamali detektorden gecirdikten sonra CNN ve ardindan
FCNN kullanan bir network modeli kullanir. Ana tespit kismi yapildiktan sonra IM
bloklar birbirinden bagimsiz bir sekilde derin 6grenme tarafindan degerlendirilir. IM
bloklarin birbirinden bagimsiz degerlendirilmesi derin 6grenme kisminda basit bir
model yapist kullanmay1 saglar. GFDM-IM icin tespit kismi i¢in derin 68renme
destekli ilk uygulamadir. Bu da yaptigimiz modelin karmagikligini kabul edilebilir
bir sekilde artirarak BER basarimi saglar.

Tezin dordiincii asamasinda non-orthogonal ve orthogonal dalga formalari igin
SMX-IM data tespit kismi i¢in caligilmigtir. Burada ana tespit yapildiktan sonra IM
bloklar1 anten bazli gruplandirilarak alt bloklara doniistiiriilir. Her bir alt blok anten
alt tastyict konumlar1 ve kompleks real boyutu olmak iizere 3 boyutta degerlendirilir.
Her bir alt blok CNN algoritmasindan yararlanilarak degerlendirilir. GFDM ve OFDM
MIMO-IM alict tarafi i¢in yapilan ilk ve yenilik¢i bir algoritmadir. BER basariminda
onemli bir gelisme saglanirken modelin karmagiklig1 ZF ile hemen hemen aynidir

Bu tezde GFDM, GFDM-IM ve SMX-IM i¢in derin 6grenme destekli alict modeli
onerilmistir. Onerilen tiim methodlar bit hata oran1 basarimim saglamistir. GFDM
icin karmasik modelle 6grenim saglanirken, GFDM-IM i¢in kabul edilebilir bir
karmagsiklikla model ©Onerilmisti.  SMX-IM i¢in Onerilen modelin karmagikligi
dogrusal tespit yontemleri ile karmasikligiyla hemen hemen ayni kalmistir. Derin
ogrenme yardiml data tespiti metotlarinin IM ve SMX-IM modelleri i¢in gelecek
kablosuz haberlesme sistemleri i¢in 6nem arz edecegi on goriilmektedir.
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1. INTRODUCTION

Wireless communication is a type of data communication that is performed and
delivered without being connected to fixed locations. As wireless communication
has become an essential part of daily activities, the demand for reliable, fast and
effective wireless communication methods goes on with the growing trend. Besides,
the burst of advanced wireless applications i.e. augmented reality, internet of things
and virtual reality, has pushed the development of wireless communication in order to

reach thousandfold capacity, millisecond latency, and massive connectivity.

Deep learning is one of the most rapidly developing and interesting fields of
computer science in recent years. The goal of deep learning algorithms is to find an
approximation of an unknown function. The main advantage of deep learning is high
learning capacity and no need to feature extraction manually. Although the definition
of deep learning was made in 1986, there has been no significant development until
the last 10 years. Thanks to the development of GPU, neural network architecture and
optimization algorithms, deep learning has a significant improvement to solve complex
problems in miscellaneous fields, e.g. natural language processing, object detection,
computer vision. Also, it has become an important area for communication systems,

especially for physical layer problems.

In this sense, it is obvious that the demand for wireless communication continues
to grow with new applications and deep learning application has a significant
development for several areas. Therefore, deep learning aided wireless communication

system comes to prominence for future wireless communication.

1.1 Literature Review

OFDM with multiple numerologies concept has been proposed to meet the requested
key performance indicators of 5G wireless networks by 3GPP [1,2]. Although OFDM
has solid advantages, e.g., simple equalization, robustness to frequency selective fading

and easy implementation, the inabilities of OFDM such as OOB emission and high
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PAPR, make it quite disputable to meet the expectations from the PHY of future
wireless access technologies [3]. Recently, several waveform proposals have been

presented to overcome the above limitations of OFDM.

GFDM [4] is one of the prominent non-CP-OFDM-based waveforms to cope with
the challenges of future wireless networks. GFDM provides advantages in terms
of latency, spectral efficiency, and OOB emission because of block-based structure,
reduced overhead of CP and subcarrier-based digitally pulse shaping, respectively. The
featured benefit of GFDM is the flexibility that enables time-frequency engineering

according to the requirements of the target application.

IM techniques [5] offer energy and spectral efficiency by utilizing transmission
entities to convey digital information innovatively. While SM [6, 7] utilizes the
transmit antennas of a MIMO transmission scheme, OFDM-IM [8-10] utilizes the
subcarrier indices in a multi-carrier system to provide alternative ways for transmitting
information. Taking account the efficiencies provided by IM, GFDM with IM has been
considered and innovative transceiver schemes have been introduced [11-16]. In [11],
the application of the SM-GFDM system has been considered. In [12], the combination
of the IM technique with GFDM has been investigated. In [13], the combination of
GFDM with SM and IM techniques has been considered. In [14], a GFDM-based
flexible IM transceiver, which is capable of generating and decoding various IM
schemes has been proposed. In [15], flexible IM numerology has been proposed to
optimize OOB emission, spectral efficiency, and latency jointly. Furthermore, in [16], a
novel MIMO-GFDM scheme, which combines SMX and MIMO transmission, GFDM
and IM, has been proposed. Despite having optimized transceiver schemes in terms
of OOB emission, spectral and energy efficiency, GFDM-IM schemes suffer high

computational complexity with respect to conventional OFDM schemes.

Deep learning has recently attracted significant attention because of its high
performance to solve computationally-burdened problems in various fields such as
object detection, natural language processing, and computer vision [17]. Considering
the unprecedented success of deep learning in classification problems, researchers are
eagerly attempting to exploit it for wireless communication. In [18], a pair of blind
detectors systems based on the clustering concept has been proposed for SM. In [19], a

deep learning-based framework has been presented for channel estimation problem in
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OFDM. In [20], a ZF detector followed by a deep neural network has been proposed for
OFDM detection. In [21], a deep complex convolutional network has been developed
as an OFDM receiver. In [22] and [23], a communication system has been considered
as an autoencoder and communicating binary information through an impaired channel
has been treated as reconstruction optimization over impairment layers in a channel
autoencoder. This approach has been extended to multi-antenna case in [24]. In
[25-27], deep learning-based MIMO detection schemes have been proposed. Besides,
the use of deep learning has also been considered for uplink/downlink channel
calibration in massive MIMO systems [28]. In [29] and [30], deep learning has been
exploited for OFDM-IM and GFDM, respectively. Furthermore [31], deep learning
aided SMX-IM has been examined. For a comprehensive overview of deep learning

aided wireless communication, interested readers are referred to [32—-35].

1.2 Original Contributions

In this thesis study, deep learning aided data detection schemes are proposed for

GFDM, GFDM-IM, and SMX-IM.

In the first stage of the thesis, a deep neural network for GFDM symbol detection and
demodulation is considered. The contributions of the first stage of the thesis can be

summarized as follows:

e The main contribution is to propose a new architecture for the detection and
demodulation of the GFDM blocks including coarse and fine detection stages,
which are implemented by using a linear detector and a neural network in a

cascaded manner. This model is termed as DL-aided JDD.

e Linear MMSE detector is proposed for the coarse detection stage of the cascaded

approach.
e CNN is exploited to handle complex signals, i.e., QAM signals, through FCNN.

e Proposed scheme provides significant BER improvement compared to classical

linear detectors with increasing complexity

In the second stage of the thesis, a deep neural network for GFDM-IM is considered.

The contributions of the second stage of the thesis can be summarized as follows:
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e The main contribution is to propose a novel deep convolutional neural
network-based detector is proposed for GFDM-IM scheme. This model is termed

as DeepConvIM.

e This two-stage approach prevents the getting stuck of neural networks in a saddle

point and enables IM blocks processing independently.

e The FCNN part uses only two fully-connected layers, which can be adapted to yield

a trade-off between complexity and BER performance

e CNN approach is used to detect IM scheme to improve a deep learning model in
terms of sparse interactions, parameter sharing, and equivalent representations for

the first time.

e The proposed scheme has a straightforward and flexible neural network structure,

which can be adapted to yield a tradeoff between complexity and BER performance.

In the third stage of the thesis, a deep neural network for SMX-IM is considered. The

contributions of the third stage of the thesis can be summarized as follows:

e A DNN-aided detector is proposed for the combined application of SMX MIMO
transmission, GFDM, and IM for the purpose of improving error performance

without increasing complexity. This model is termed as Deep-SMX-IM.

e The main contribution of this proposed model is to use a CNN to adapt the
transmission characteristics of spatial multiplexing and to apply a FCNN to learn

the transmitting properties of frequency multiplexing.

e Using IM enables to implement subblock-based detection simplifies the DL model

and reduces the complexity

e A CNN approach provides a flexible structure for SMX transmission thanks to

supporting multi-channel operation and preserves the spatial dependence

e The proposed method would be the first appearance to implement DL-aided
SMX-IM detection

e It has been shown that the proposed method has an important BER gain competed

with ZF detector with the same complexity
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The sections in this thesis are organized as follows. In Section 2, general concepts
about the subjects undertaking in this thesis are explained shortly. In Section 3, the
deep learning aided GFDM detection is presented. Deep convolutional aided detector
is proposed for GFDM-IM in Section 4. Deep Learning Aided Spatial Multiplexing
with IM techniques are analyzed in Section 5. Section 6 presents the results of this

thesis.






2. GENERAL CONCEPTS

In this section, the general concept of data detector and deep learning method are

explained briefly.

2.1 General Concept of Data Detector

The wireless communication systems can be expressed as

y =Hx+w. 2.1

where y represents the R x 1 vector of received signals, x denotes 7'-dimensional
transmitted symbol, H is the R x T channel matrix, w is an R x 1 vector of AWGN

samples with elements distributed as %4 (0, G2).

For wireless communication systems detection of data from noisy measurements of
transmitted signals is defined as a challenging problem. There are a lot of algorithms

various trade-offs between performance and computational complexity.

2.1.1 Maximum likelihood

ML is the optimal detector in sense of minimizing the probability of error. This
detector for the problem in equation 2.1 can be obtained as
& — argmin ||y — Hx||?, (2.2)
xe{ 2}
Here, The ML computes overall probable transmitted vectors given the measurements
y. It is obvious that ML detection suffers from the exponentially increasing

computational complexity.

2.1.2 Linear detector

Linear Detector has low-complexity and simple but their solution is sub-optimal. These
detectors are based linear transformation to the received symbols which then followed a

minimum distance quantization. These methods try to decouple the effects of channel
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spatially. There are two common methods for Linear Detector: These are ZF and

MMSE detectors.

ZF technique is simplest detection technique and multiplies the received symbol vector

by an equalization matrix. This matrix can be expressed as
Gz —H' — (HH) ' HY 2.3)

Here, it is assumed that H is invertible. At the decision step, each element of the filter

output vector

%7k = Gzry = x+ (H'H) ' Hw 2.4)

is mapped onto an element of the symbol constellation by a minimum distance

quantization.

The performance of the ZF detection is reduced because of the (HHH)_1 Hfw. To
reduce for the this noise enhancement, the MMSE detector was proposed. The MMSE
detection takes consider into the noise variance and reduces the noise enhancement by
using the minimum mean square error. The estimation of the noise variance is very
simple and it does not cause high complexity to the overall systems. MMSE detector

uses

Guuse — (HPH + 6217) " HY, 2.5)
where I7 is a T x T identity matrix. The resulting filter output is given by
~ —1
Xvmse = Guusey = (H'H+ o,17)  Hy. (2.6)

The linear MMSE detector achieves better performance at low SNRs than the ZF

detector thanks to noise enhancement.

2.2 General Concept of Deep Learning

The use of general concepts related to deep learning has been shown in Fig 2.1. There
are four main stages in the general concept of deep learning, these are data generation,

building model, training step and testing step.

2.2.1 Data generation
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Figure 2.1 : The General Concept of Deep Learning aided Wireless Communication
Application

Deep learning algorithms need to process large datasets in order to learn a pattern.
The full exponential increase of wireless devices has led to the corresponding growth
of traffic data [36]. This makes it easy to collect data for deep learning-aided
next-generation communication systems. In this thesis, MATLAB simulation has been
used for generating data. Training data has to be generated by fixed SNR. Training
SNR value has a key role because low SNR can model to learn noise patterns and in
contrary high SNR value can a cause solution that is not robust. The testing data has

been generated for a range of SNR values.

2.2.2 Building model

The most important advantage of DL model is that it can solve a nonlinear problem that
can not be solved by a linear expression thanks to its nonlinear activation functions.
Activation functions also provide to normalize the output of each neuron. That is why

activation functions, which are used in the last layer in deep learning aided detection



problems, are so essential. If symbol detection is required by a neural network or bit
e —e

e
—— , whose
—X

detection, it is necessary to use an activation function either f;,,;(x) = o
e e

1
= whose range is (0, 1), respectively. In this

thesis, the used activation function can be seen in Fig. 2.4.

range is (—1,1); or figmoia(x) =

The simplest model of DNN is defined as a neuron, which is inspired by the neuron of
the human brain, as seen in Fig. 2.3. Each neuron gets an input vector, multiplies them

by their weights and applies activation functions. This process can be represented as:

hy = ¢(W'x +b) (2.7)

where h; represents output of each neuron, x is an input vector and W, b, ¢ denote

weight matrix, bias term and activation functions, respectively .

A fully connected neural network, which consists of neurons, defines that each neuron
in one layer is connected the all other neurons in the previous layer and next layer,
but neurons within a single layer don’t share any connections as seen in Fig 2.2. A
FCNN describes as f(x;0) : R — RN for [ = 1...L, where x, L and 6 are an input
vector, number of layer and trainable parameters, respectively. Throughout the iterative

process, a FCNN can be expressed as

X = filxi—1:6,) = 9(W] x,_1 + by) (2.8)

for /th layer. Here, ¢ is an activation function and W;, b; are weights and bias term,

respectively.

The convolution neural network is a specialized DL model and represents a vision
of the human brain. It consists of convolution layer whose learning parameters are
defined as kernel filter W/, for f = 1...F. A convolution layer generally gets a
multidimensional array. During the forward pass, each kernel filter has convolved a
part of the input vector which has the same dimension, i.e. kernel filter has slid across
an input vector according to stride size. In doing so, because the same kernel filter
weights are used throughout the entire input data, the complexity decreases according
to FCNN. The sum of the products of the corresponding elements is the output of the

convolution layer. This process can be expressed as
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a—1b—1

Ylfj = Z Z Wc{—kb—lxl+s(i—1)—k,1+s(j—1)—l (2.9)
k=0 1=0

where s is stride, W is a x b kernel filter, X denotes & x 3 input matrix, Y represents
o -2 b—-2
ata=2 g Brb-2

provide to reduce the input image to its important features. Besides, CNN has

o =1+ feature matrix. The convolution operator
important advantages, these are sparse interactions, parameter sharing, equivalent

representations [17].

The parameters used to set the model are hyperparameter and model parameters. While
hyperparameter represents untrainable parameters such as layer size, a number of the
neuron, learning rate, model parameters represent trainable parameters weight and
bias. Hyperparameter, which needs to be set before the training process starts, the
choice is a tricky and unknown step, because there is no strict rule or formula to choose
right hyperparameters. It depends on searching and tuning operations over the deep

learning model.

2.2.3 Training stage

Deep learning model consists of multiple layers, connections between these layers, a
lot of parameters which are required to be tuned. The main goal of DL is to optimize
model parameters in order to minimize loss functions. A loss function quantifies the
difference between the estimated output of the model and the correct output. In this

thesis, the mean squared error is used as a loss function. It can be explained as
l ( A) = —1 gn ( — A)z (2.10)
0SS .
MSE\Y,Y n 4 y—=y

where y and y represent expected output and calculated output respectively. The cost
function calculates an average of loss function using a part of a training data set.
According to this cost function, gradient descent-based optimization methods try to
adjust model parameters iteratively. This optimization method calculates the local
gradient of the cost function according to each model parameter, and its goal is to
descend gradient until the algorithm converges to a minimum. This process can be
expressed as

0. =60—nv/loss(0), (2.11)
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where 7 represents learning rate, which describes as size of the gradient descents step,
and 0O refers to trainable parameters. In order to find global minimum, a lot of gradient
descent algorithms have to be developed such as Adam [37], Adagrad, RMSProp and
Momentum. In this thesis, the latest trend optimization Adam [37] is used as gradient

descent methods.

The main purpose of the training model is not to learn the training data very well, but
to give the same result in the test data. Therefore models are expected to find low
generalization error as a result of training. Over-fitting is defined as the model has
a high generalization error. Preventing overfitting has an important role during the
training stage. Dropout scheme, adding regularization terms, early stopping are some

methods for preventing overfitting.

Training deep learning models involves intensive matrix multiplications on an
extremely dataset. This type of computing can be time-consuming. GPU, which
has a large number of cores and specialized in running multiple computations
simultaneously, can speed up the training process significantly. Models with high

accuracy can be achieved in a short time with GPU.

In this thesis, three different DL model has been constructed for data detection. The
first model, termed as DL-aided JDD, is built so complex. But DeepConvIM and
Deep-SMX-IM have a very basic structure thanks to index modulation and spatial
multiplexing. So, it is concluded that DeepConvIM and Deep-SMX-IM are more

useful for future wireless networks thanks to index modulation.

2.2.4 Testing stage

After the training stage, model must be tested with the generated test data for each SNR
value by using Monte Carlo simulation. If the training results do not give sufficient
BER performance as reasonable increasing complexity, the hyper-parameters need to

be changed and the model should be trained again.
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Figure 2.4 : Common Used Activation Functions
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3. GENERALIZED FREQUENCY DIVISION MULTIPLEXING

In this stage, GFDM scheme has been examined and deep learning aided JDD scheme
has been proposed. In Section I, the system model for GFDM is presented. In Section
II, deep learning aided GFDM detection and demodulation is presented. Numerical

results are provided in Section III.

3.1 System Model for GFDM

A GFDM symbol d = [do,dl,...,dM_l]T has a block-based structure, which can
be decomposed into M subsymbols, each consisting of K subcarriers, i.e., d, =
[domsdims - ydk—1m] > for m = 0,1,...,M — 1. Here, dy,, is the symbol from a
27-valued complex constellation, where ¥ is the modulation order, transmitted on
the k-th subcarrier of the m-th subsymbol of the GFDM symbol, (-)T shows the
transposition of a vector. The total number of symbols in a GFDM symbol equals
to N = KM. The block diagram of the GFDM transceiver is shown in Fig. 3.1. At the
baseband processing stage of the GFDM transmit signal, each dj ,, is cyclically-filtered

by using a pulse shape

k
S1nl) = (- ) g enp (2 ) 6.

where n denotes the sampling index. Here, gi ,,(n) is a time and frequency shifted
version of a prototype filter g(n), where the modulo operation and the complex
exponential perform the shifting operations in time and frequency, respectively. Then,
the overall GFDM transmit signal is obtained by superposition of all transmit symbols

K—1M—-1

x(n) = 31" demgm(n). 3.2)

k=0 m=0

After collecting the filter samples in a vector gy , = [gkm 0),...,8km(N— 1)]T, Eq.
3.2 can be rewritten as

X = Ad, (3.3)
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where A represents a KM x KM transmitter matrix [4] with the following structure:

A=1[20, - 8K—1,0,801s- - 8K—1,15- -+ 8K—1.M—1] - (3.4)

As a last step of the GFDM baseband processing at the transmitter side, a CP with
length Ncp is added to x to make the convolution with the channel circular. The
resulting vector

~ T _T T
x:[x(KM—NCerl:KM) ,x] , (3.5)

where x (a : b) shows all elements of x with indices from a to b, inclusive of a and b,

is transmitted over a frequency-selective Rayleigh fading channel.

At the receiver side, assuming that perfect synchronization is ensured, CP is longer
than the tap length of the channel (N¢y,) and the wireless channel stays constant during

the transmission of a GFDM block, the received signal vector y can be obtained as
y=Hx+n (3.6)

after the removal of CP. Here, y = [y(0),y(1),...,y(N — 1)]T is the vector of the
received signals, H is the N x N circular convolution matrix constructed from the CIR
coefficients given by h = [i(1),A(2),...,h(Ncy)]", and n is an N x 1 vector of AWGN
samples. The elements of h and n follow %.#(0,1) and .4 (0,c2) distributions,

respectively. After substituting Eq. 3.3 in Eq. 3.6, it can be obtained as
y =HAd+n =Hd+n. (3.7)
Eq. 3.7 enables to use JDD, which can be implemented as
d = By. (3.8)

Here, B is a KM x KM receiver matrix. There are mainly two options for B. The
ZF receiver Bzp = H™! removes any self-interference completely but it enhances
the noise. The MMSE receiver Bymsg = (Rﬁ+ﬁHﬁ)_1fIH, where R2 is a
covariance matrix of the noise, makes a trade-off between self-interference and noise
enhancement. Then, original information bits are retrieved after demapping and

decoding stages.
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FINE DETECTOR

COARSE Complex to teer Real to
Real Complex

DETECTOR Mapper Detector Mapper

Figure 3.2 : Block Diagram of the DL-aided JDD.

3.2 Deep Detection and Demodulation for GFDM

The block diagram of the proposed DL-aided JDD scheme proposed for JDD block of
the GFDM receiver is shown in Fig 3.2. In [20], it is stated that, while using neural
networks for detecting communication signals, estimating the transmitted signal from
very beginning may suffer from slow convergence. Therefore, in [20], a cascaded
detection approach has been proposed. Inspired from [20], two-stage detection and

demodulation for GFDM receiver has been proposed.

The first stage of the proposed detector is coarse detection. In this stage, thanks
to system model in Eq. 3.7, modified received signal § = By is obtained by using

well-known linear detectors such as ZF and MMSE.

The second stage of the proposed detector uses deep neural network to implement fine
detection, which is expressed as

d=06(9). (3.9)

Here, 0 includes the first part of the fine detector trainable parameters, which is CNN
parameters (Ocyy), as well as second part of the fine detector trainable parameters,
which is FCNN parameters (8rcyny). One of the challenging problems faced by
deep detection is to handle complex numbers. Currently, using complex numbers
in neural networks is not yet supported by any popular DL frameworks. In order to
use common tools for DL, complex values have to be expressed as real values without
losing relationship between real and imaginary parts of the complex numbers. The first
part of the fine detector performs complex to real mapping using CNN, which can take

multi-dimensional input. The complex to real mapper convolves the received signal y
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with the kernel filter u, = [MP’R upJ], adds bias ¢,, for p = 1,...P, with stride 1, and

the modified received signal can be expressed as
(1) = Relu(utp g * R(y(n) + s+ S (v(n)) +¢,), (3.10)

where Relu is an activation function, for n = 0,...N — 1. Here u, and ¢, are called
complex to real mapper trainable parameters. The second part of the fine detector
performs deep detection by using FCNN. First, FCNN based deep detector can be
constructed differently with non-trainable parameters, e.g., number of layers, batch
size, different optimizer, activation functions, which affect the training duration and
accuracy. Second, the deep detector gets the output of the complex to real mapper
and performs deep detection by using Opcyny = {W,b} trainable parameters, where
W = [w?,wg, ...,W1] contains weights parameters and b = [by,bs,...,b] contains
bias parameters, L indicates the number of layers. The number of neurons in
each layer can be different, hence, weight parameters of any layer represents w; =
[wl(l),wl(Z), ...,w(T})], where Tj represents the number of neurons in the /-th layer.
First layer of the FCNN gets the output of complex to real mapper X.,, and generates
the output

e; = Relu(wXe, + b1). (3.11)

Then, the second layer gets the e; and generates the output
e = Relu(W2€1 + bz). (3.12)

This process continues until the last layer, however tanh, which is suitable for QAM
modulations, is used as the last layer activation function instead of Relu. After that,

the output of the FCNN can be obtained as
Rpenn = [R(x(0)), .o, R(x(N — 1)), 3(x(0)), ..., S(x(N — 1))]. (3.13)

Finally, the third part of the fine detector performs real to complex mapping by

arranging the output of the FCNN and constructs the estimated GFDM block d.

3.3 Numerical Results for GFDM

In this section, the BER performance of the proposed DL aided GFDM receiver has

been evaluated by computer simulations for Rayleigh fading with EPA channel model
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Table 3.1 : GFDM Simulation Parameters

Description H Parameter ‘ Value ‘
# subcarriers K 32

# subsymbols M 3
Pulse shaping filter g RC
Roll-off factor a 0.5
Length of cyclic prefix Ncp 32

# channel taps for EPA channel Nch 7

[38]. GFDM parameters used in the simulations are given in Table 3.1. The chosen
pulse shape for the GFDM prototype filter is the RC filter with a roll-off factor (a)
of 0.5. For the coarse detection stage, MMSE and ZF linear detectors are used. For
the fine detection stage, model parameters are shown in Table 3.2. According to these
parameters, fine detector models are constructed as shown in Table 3.3. Here, while the
first two layers implement complex to real mapping, the rest of the layers implement
deep detection. 7; is shown as output shape column in Table 3.3. There is no clear
study of setting the training or testing SNR for DL-aided detection. The detection
SNR range for simulations is 0 dB to 14 dB with 2 dB step. Accordingly, training SNR
range is determined between 7 dB to 14 dB with 1 dB step. Two common optimizers,
namely Adam [37] and Adadelta [39], are used. Adam optimizer is used as gradient
descent algorithms. Before the start of training, 0 is initialized uniformly. Training
process takes from 1200 epoch. Fine detector model is constructed using Keras [40]
(back-end Tensorflow-GPU [41]) and trained on Google Colab, providing GPUs in
the cloud environment. For MMSE coarse detection, training data consist of 16 x 10%
GFDM symbols and testing data consist of 9 x 10* symbols. For ZF-based coarse
detection, training data consist of 4 x 10°GFDM symbols and testing data consist of
9 x 10* symbols. The uniform distribution of the data to be trained is important for

proper learning. Therefore, training data is shuffled before training.

Fig. 3.3 compares the BER performance of the MMSE-JDD and the DL-aided JDD
with MMSE coarse detector for BPSK transmission. From Fig. 3.3, it is observed that
the DL-aided JDD with MMSE coarse detector provides approximately 4 dB better
BER performance than MMSE-JDD for Adam optimizer. Also, BER performance
gains of the DL-aided JDD with MMSE coarse detector is increased to 6 dB for

Adadelta optimizer.
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Table 3.2 : Fine Detector Model Parameters for GFDM

’ Description H Parameter ‘ Value ‘
# Kernel Filter P 96
# Layer L 7
Learning Rate Ir 0.0001
Dropout Rate r 0.1
Batch Size B 1000

Table 3.3 : Fine Detector Model Summary for GFDM

’ Layer ‘ Output Shape ‘ Activation Func.

Input (B,N) None
Conv2d+Dropout(r) (B,N,2,N) Relu
Flatten+Dropout(r) (B,N?x 2) Relu
Dense+Dropout(r) (B,1000) Relu
Dense+Dropout(r) (B,1000) Relu
Dense+Dropout(r) (B,1000) Relu
Dense+Dropout(r) (B,1000) Relu
Dense+Dropout(r) (B,1000) Relu
Dense+Dropout(r) (B,1000) Relu
Dense+Dropout(r) (B,Nx2) tanh

——MMSE

—&— MMSE Model (Adam opt.)
—#—NMMSE Madel (Adadelta opt ) | ]

. .
m . —
. e
. ~
102} -

SNR

Figure 3.3 : BER Performance of MMSE-JDD and DL-aided JDD with MMSE
Coarse Detector for BPSK Transmission.

Fig. 3.4 displays the BER performance of the ZF-JDD and the GFDM-ZF, the
DL-aided JDD with ZF coarse detector for BPSK transmission. From Fig. 3.4, it is

observed that the DL-aided JDD with ZF coarse detector provides approximately 5 dB
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Figure 3.4 : BER Performance of ZF-JDD and DL-aided JDD with ZF Coarse
Detector for BPSK Transmission.

better BER performance than ZF-JDD for Adam optimizer. For Adadelta optimizer,

the DL-aided JDD with ZF coarse detector provides 3 dB additional BER gain.
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4. GENERALIZED FREQUENCY DIVISION MULTIPLEXING WITH
INDEX MODULATION

In this stage, GFDM-IM scheme has been examined and deep learning aided
GFDM-IM detection scheme has been proposed. In Section I, the system model for
GFDM-IM is presented. In Section III, Deep-SMX-IM is presented. Numerical results

are given in Section III.

4.1 System Model for GFDM-IM

The block diagram of the GFDM-IM transceiver has been shown in Fig 4.1. Consider
a GFDM symbol with M subsymbols each consisting of K subcarriers, the m-th
subsymbol is partitioned into L IM blocks, each containing u = K/L subcarrier
positions. In an IM block, only v out of u subcarrier positions are selected
as active and used to transmit QAM symbols from Q-ary signal constellation .&
with Q elements. Thus, an IM block can transmit a p-bit binary message s’ =
[sh, (1), s, (2),...,s, (p)]T. In each IM block, p, = vlog,(Q) bits of incoming p-bits
sequence are used as QAM-bits. The remaining p; = |log, (C(u,v))| bits of this
sequence are used to determine the active subcarrier positions. Therefore, it can
be obtained o = 27 possible realizations. Here, C(u, V) is the binomial coefficient
and |-| denotes the floor function. Note that active subcarrier positions can be
determined using a look-up table or combinatorial methods [8]. As a result, IM blocks
d, =|d,(1),d,(2),...,d, (u)]T, where d’, () € {0,.7}, is constructed according to
p input bits [12]. Then, IM blocks are first concatenated to obtain the GFDM-IM
subsymbol d,, = [dom,d1 m,---,dk—1,m] and the resulting GFDM-IM subsymbols are
combined to form the GFDM-IM symbol

d= [d0,07 e 7dK—1707d0717' iz 7dK—1,17 <o JdK—LM—l] ) (41)

where dj , € {0,.7}, fork=0,...,K—1,m=0,...,M — 1, is the data symbol of k-th
subcarrier on m-th subsymbol. After that, the GFDM-IM symbol d is modulated using
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a GFDM modulator and the resulting GFDM transmit signal can be expressed as
x = Ad, 4.2)

where A is an N x N GFDM modulation matrix [4], N = KM. Finally, a CP with length
T
Ncp 1s attached to x and the resulting vector X = [X (KM —Ncp+1: KM)T ,XT] 1S

transmitted over a frequency-selective Rayleigh fading channel.

At the receiver side, assuming that perfect synchronization is ensured, CP is longer
than the tap length of the channel (N¢y) and the wireless channel stays constant through
the broadcast of a GFDM symbol, after the removal of CP the received signal vector y
can be obtained as

y=Hx+n 4.3)

where y = [y(0),y(1),...,y(N —1)]T denotes the vector of the received signals, H
represents the N x N circular convolution matrix constructed from the CIR coefficients
given by h = [A(1),h(2),...,h(Ncy)]", and n is an N x 1 vector of AWGN samples.
The elements of h and n follow %.4(0,1) and %.# (0, 62) distributions, respectively.
After substituting Eq. 4.2 in Eq. 4.3, it is obtained the equivalent channel of the
GFDM-IM scheme as

y=HAd+n=Hd +n. (4.4)
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Figure 4.2 : Block Diagram of the DeepConvIM

4.2 Deep Detection and Demodulation for GFDM-IM

The block diagram of the proposed deep convolutional neural network-based joint
GFDM-IM detection and demodulation scheme, termed as DeepConvIM, is shown
in Fig 4.2. GFDM-IM subcarriers are non-orthogonal to each other thank to
non-rectangular pulse shaping unlike OFDM-IM. Therefore, the inherent ICI prevents
the frequency domain decoupling of GFDM-IM subcarriers for both SISO and MIMO
transmission schemes. As a result, simultaneous detection of all subcarriers is required
for optimum decision. Because this process is computationally infeasible, for the
optimum detection problem of GFDM-IM, low complexity solutions are required.
Inspired from [20], the proposed detector has two parts as coarse detector and fine
detector. This two stage approach prevents getting stuck of neural network in a saddle
point and enables the processing IM blocks independently. First, coarse detector uses
ZF detector in order to process channel and GFDM modulation effects jointly. The

output vector of coarse detector can be expressed as
A ~ ~ _1 ~
d— (HH H) Aty (4.5)

Since coarse detector operates on the equivalent channel of the GFDM-IM scheme,
the remaining parts can handle the IM blocks individually. Therefore, fine detector
processes the IM blocks independently. IM Block Splitter partitions the pre-processed
received vector d into IM blocks d/, = [d!, (1),d}, (2).,....d, (u)]T The fine detector
part of DeepConvIM uses a CNN followed by a FCNN, which is expressed as

s =o(dl), (4.6)



where 0 represent the total of trainable parameters. The CNN part of the fine detector
convolves the IM block cAl,ln with the kernel filter a, = [at_‘R atvl], adds bias ¢;, for

t =1,...T, with stride 1, and the modified received IM block can be expressed as
d,, (y) = tanh(a, g+ R(d), (7)) + ars 3 (d}, () + 1), 4.7

where tanh is an activation function, for ¥ = 1,...,u. Here a, and ¢, are called
convolution trainable parameters. Notice that unlike [29], DeepConvIM does not need
the energy of the received signal. The FCNN part of the fine detector gets the output
of the CNN and performs deep detection by using {W,b} trainable parameters, where
W = [wl,wz] contains weights parameters and b = [by, b;| contains bias parameters.
That is, The FCNN part uses only two fully-connected layers, hidden layer has 7 nodes
the output layer has p nodes as expected. The output of fine detector can be expressed
as

8}, = sigmoid(w(tanh(wd}, , + by)) + b2, (4.8)
where sigmoid is an activation function. Finally, IM Block Combiner merges the

output of the fine detector and forms the transmitted information bits.

The aim of the training stage of DeepConvIM is to find 6 parameters in order to
minimize the cost function, which calculates averages of loss function for total training
datasets. Loss functions can be expressed as (s),8.) = |s., — 8. ||. Before training,
GFDM-IM simulation training data is generated and divided into batch (B). At first, the

0 is randomly initialized. Throughout the training, 6 is updated according to stochastic

gradient descent (SGD) algorithm for every batch, which is expressed as
0. =0 —n<7cost(Sm,Sm), 4.9)

where 1) is learning rate.
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Table 4.2 : Summary of the Computational Complexity of ZF, ML and DeepConvIM
Detectors for GFDM-IM

Detector H Total Complexity (CMs)

ZF 3N3 +N?(1+Ngp) + Q"ML

ML (Q" M (NVML + N) + Ncp N2

DeepConvIM || 3N° + N? (1 + Ncy) + (uT (2+A))ML/3 + (uT T+ TA +Tp + pS)ML/3

Table 4.3 : A Look-up Table Example for u = 4,v = 2.

’ Bits H Indices H IM block ‘

00] || (1,2} || [sx sz ©O o];
[01]] {23} || [0 sy s¢ O]T
[10] || {34} | [0 O s SC]T
[11] | {1,4} || [sy 0 0 s¢]

4.3 Complexity Analysis for GFDM-IM

Computational complexity of ZF, ML and DeepConvIM detectors has been
investigated from the standpoint of number of CMs and given in Table 4.1. Here, W,
and ®; 7 are used for J x I matrices, Wy and ¢y stand for J x 1 vectors. Notice that
using complex numbers is not yet supported by any popular deep learning frameworks
and FCNN part of DeepConvIM operates on real numbers thanks to CNN part. Since
one complex multiplication can be carried out with at least three real multiplications,
the number of multiplications belonging to neural networks parts of DeepConvIM are
divided to three in order to refer them as complex multiplications. The summary of
the results is given in Table 4.2. From Table 4.2, it is observed that while ZF and
ML detectors have the lowest and the highest complexity, respectively, DeepConvIM

provides an intermediate solution with regard to computational complexity.

4.4 Numerical Results for GFDM-IM

In this section, the BER performance of DeepConvIM has been compared to ZF and
ML detection methods. The chosen pulse shape for the GFDM prototype filter is the

RC filter with a roll-off factor (a) of 0.5. The active subcarrier indices are selected
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Table 4.4 : The Total Number of CMs for ZF, ML and DeepConvIM Detectors for

GFDM-IM

’ Configuration H ZF ‘ DeepConvIM ‘ ML ‘
BPSK, K =32, M =1 1.07x10° [ 1.18 x10° [ 2.33x 1012
4-QAM,K=32M=1 | 1.09x10° | 1.56x10° | 1.48 x 10?2
16-QAM, K =32,M =1 || 237x10° | 420x10° | 4.15x 103
BPSK, K =8,M =1 208x10° | 5.15x10° | 1.07 x 107
BPSK, K = 8, M =3 461 x10* | 554x10* | 5.23x10°

Table 4.5 : Fine Detector Model Parameters for GFDM-IM

Description H Parameter \ Value ‘
# Kernel Filter (for BPSK transmission) T 16

# Kernel Filter (for 4-QAM transmission) T 32

# Kernel Filter (for 16-QAM transmission) T 64

# Nodes of Hidden Layer (for BPSK transmission) T 64

# Nodes of Hidden Layer (for 4-QAM transmission) T 128

# Nodes of Hidden Layer (for 16-QAM transmission) T 256
Learning Rate Ir 0.0008
Batch Size B 1000

Table 4.6 : Fine Detector Model Summary for GFDM-IM

’ Layer ‘ Output Shape ‘ Activation Func. ‘

Input (B,2,u,1) None
Conv2d (B,1,u,T) tanh
Flatten (B,uT) None
Dense (B,7) tanh
Dense (B.p) sigmoid

using the lookup table in Table 4.3. Fine detector model parameters and summary are
given in Table 4.5 and 4.6, respectively. During training stage, SNR is set to 15dB,
Adam optimizer [37], which is SGD-based, is used, and the learning rate is set to
8 x 10™*. The DeepConvIM model is trained in a short time, 60 epochs is enough to
get significant results. A GFDM-IM training data set, including 16 x 10* symbols, and
a GFDM-IM testing data set, including 3 x 10% symbols are generated for each SNR
value regarding K = 32. For K = 8, training data and testing data include 32 x 10* and
6 x 10* GFDM-IM symbols, respectively.
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DeepConvIM model is constructed using Keras [40] (back-end Tensorflow [41]) and
trained on Google Colab, providing tensor processing units (TPUs) in the cloud

environment.

Fig. 4.3 compares the BER performance of the ZF and the DeepConvIM with ZF
coarse detector for BPSK transmission when K = 32 and M = 1. From Fig. 4.3, it is
observed that the DeepConvIM provides approximately 6 dB better BER performance
than ZF at a BER value of 107 .

Fig. 4.4 compares the BER performance of the ZF and the DeepConvIM with ZF
coarse detector for 4-QAM and 16-QAM transmissions when K = 32 and M = 1. From
Fig. 4.4, it is observed that the DeepConvIM provides approximately 4.5 and 1 dB
better BER performance than ZF for 4-QAM and 16-QAM transmissions, respectively,
at a BER value of 1074,

Fig. 4.5 compares the BER performance of the ZF, ML and the DeepConvIM with
ZF coarse detector for BPSK transmission, when K = 8, M = (1,3). From Fig. 4.5,
at a BER value of 10~%, while DeepConvIM provides 6 dB BER improvement with
respect to ZF detector for M = 3, the BER improvement of DeepConvIM with ZF
coarse detector with respect to ZF detector is increased to 8 dB when M = 1. Also,

ML detector has 8 dB BER improvement with respect to DeepConvIM when M = 1.

From Fig. 4.3 and 4.4, it is observed that as the modulation order increases, the learning
capacity of the model decreases. From Fig. 4.4, it is observed that when the number
of subsymbols increases, performance of the model decreases. On the other hand,
from Fig. 4.3 and 4.5, it is observed that when the number of subcarriers decreases,
performance of the model increases. The number of CMs needed by the detectors in
Fig. 4.3, 4.4 and 4.5 are given in Table 4.4. As mentioned earlier, DeepConvIM can

be evaluated as a intermediate solution regarding computational complexity.
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Figure 4.3 : BER Performance of ZF and DeepConvIM with ZF Coarse Detector for
BPSK transmission, (K =32, M = 1)
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Figure 4.4 : BER Performance of ZF and DeepConvIM with ZF Coarse Detector for
4-QAM and 16-QAM transmissions (K =32, M =1).
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S. SPATTIAL MULTIPLEXING WITH INDEX MODULATION

In this stage, SMX-IM for GFDM and OFDM scheme has been examined and deep
learning aided SMX-IM detection scheme has been proposed. In Section I, the
system model for SMX-GFDM-IM and SMX-OFDM-IM is presented. In Section II,

Deep-SMX-IM is presented. Numerical results are given in Section III.

5.1 System Model for SMX-IM

Consider a MIMO system employing 7 transmit and R receive antennas. The
block diagram of the SMX-GFDM-IM transmitter is given in Fig. 5.1. The
MIMO-GFDM-IM transmitter gets a total of P7 information bits enter for the
transmission of each frame. A GFDM symbol, each consisting of M subsymbols with
K subcarriers, is partitioned into L IM blocks, each containing u = MK /L subcarrier
positions. In an IM block, only v out of u subcarrier positions are selected as active and
used to transmit QAM symbols from Q-ary signal constellation . with Q elements.
Thus, an IM block can transmit a p-bit binary message s/ = [s (1),s/(2),...,s! (p)],
for / =1,...,L and P = pL. In each IM block, p, = vlog,(Q) bits of incoming
p-bits sequence are used as QAM-bits. The remaining p; = |log, (C (u,v))] bits of this
sequence are used to determine the active subcarrier positions with using a look-up
table or combination methods [8]. Therefore, A = 2Pi possible realizations is obtained
as seen from 5.2. Here, C(u,V) is the binomial coefficient. As a result, IM blocks
d) = [d!(1),d!(2),....d! (u)]T, where d! (y) € {0,.#}, is constructed according to p
input bits [12]. Then, the resulting IM blocks are merged to form the GFDM-IM
symbol

de = [di00s-- - di k1041015 dr k=11, dr K—1.M—1] (5.1

where d; i, € {0,7}, for k=0,.... K—1,m=0,.... M—1,t = 1,...,T is the data
symbol of k-th subcarrier on m-th subsymbol of a GFDM symbol belonging to ¢-th
transmit antenna. After that, the GFDM-IM symbol d; is modulated using a GFDM
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modulator and the resulting GFDM transmit signal can be obtained as
Xt = Adt, (52)

where A denotes an N x N GFDM modulation matrix [4], N = MK. Fi-
nally, CP with length Ncp is attached to x;¢ and the resulting vector X; =
[Xt (MK —Ncp+1: MK )T ,XtT]T is transmitted over a frequency-selective Rayleigh
fading channel. At the receiver side, assuming that perfect synchronization is ensured,
CP is longer than the tap length of the channel (Ncp,) and the wireless channel remains
constant through the broadcast of a GFDM symbol, the received signal can be obtained
as

Y1 Hi ;A ... Hr jA d, nj

= e (5.3)

YR HriA ... HrrA dr ng
after the removal of CP. Here, yg = [y,(0),y,(1),...,y,(N — 1)]" represents the
vector of the received signals, H,,, fort = 1,...,Tr = 1,...,R,, denotes the N x N
circular convolution matrix constructed from the CIR coefficients given by h,; =
[hr7,(1),hr7t(2),...,hm(NCh)]T, and n, is an N x 1 vector of AWGN samples. The
elements of h,, and n, follow €.#'(0,1) and .4 (0,02) distributions, respectively.
After substituting Eq. 5.2 in Eq. 5.3, the equivalent channel of the GFDM-IM scheme
is obtained as

y = Hd +n. (5.4)
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Figure 5.2 : GFDM-IM Mappers at Each Branch of the Transmitter.

5.2 Deep Detection and Demodulation for SMX-IM

The block diagram of the proposed deep learning-aided data detection of spatial
multiplexing scheme, termed as Deep-SMX-IM, is given in Fig 5.3. The channel
information is assumed to be perfectly known at the receiver. The proposed detector is
built as two stages as coarse detector and fine detector. It also has two intermediate
steps for regularizing coarse detector output and fine detector outputs, which are
SMX-IM Block Splitter and Combiner, respectively. As a first stage, coarse detector
applies ZF detector to handle channel and GFDM modulation effects together and the

coarse detector’s output can be given by

L4l
VE'Z — (ﬁHﬁ>_lﬁHy, (5.5)
yr

where y; = [l//tlr,llltzT,...,l//tLT]T, fort=1,..T and for [ = 1,...L, v/ denotes a u x 1
vector. After coarse detector, 1//} are subdivided into sub-block IM form by SMX-IM
Block Splitter and the resulting matrix can be expressed as
vi) . i)
e O (5.6)
yr(l) ... yr(u)
The fine detector stage of Deep-SMX-IM is built by using CNN and FCNN,
respectively. The fine detector’s CNN part convolves the subblock IM block ¥ with

the kernels w/ = [w{ ,...,w{T] adds bias ¢y for f = 1,...F and stride 1, and the
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modified received sub-block IM form is obtained as

04(7) = frann (R (W] (1) = w]) + S(Wl (1) =wh +...+

ROWE (V) * Why_ )+ S(Wh (7)) = why +¢p)

for f=1,...,F and y = 1,...,u. Note that since complex numbers are not supported by
any DL framework yet, real and imaginer parts of the received signals are processed
separately. The CNN part repeats the convolution operation for F different kernel
filters. The output from CNN can be obtained as

0{(1) 6{(2)... 6f(u)
e =| : . : . (5.7)

0L(1) 0L (u)
After that, ®' is converted into a vector by flattening process and the resulting vector
can be expressed as 0! = [0](1),...,0{(u),...,0L(1),...,0L(u)]". The fine detector’s
FCNN part executes 6’ with using {a,b} parameters, where a = [a;,a,] includes
weight parameters and b = [b1,b,] contains bias parameters. This part consists of
only two layers, first layer and output layer have 7 and PT neurons, respectively. Fine

detector’s output is obtained as

§' = fsigmoid (22 (Frann (218! + b1)) + b2, (5.8)

where fggmoid, ftanh are activation functions. Finally, SMX-IM Block Combiner
compose the fine detector’s output into transmitted information bits. Before using
the proposed Deep-SMX-IM detector, it has to be trained offline with the data which is
generated at training signal-to-noise ratio (SNR) value by simulations. While training
step uses fixed SNR value, testing step uses a range of SNR values. Deciding training
SNR value has a key role against overfit. The training offline executes on total
trainable parameters, which consists of wy, ¢y, &, B, for the purpose of minimizing
the loss function. It can be expressed as loss(s',§') = |s! —§||. In the training stage,
total trainable parameters are randomly initialized at first. Throughout the training,
stochastic gradient descent algorithm executes on these parameters, it can be obtained

as

€, =€—1 vloss(s'B,sA’B), (5.9)
where €, B, n represent total trainable parameters, learning rate and batch size
respectively.
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5.3 Complexity Analysis for SMX-IM

Computational complexity of ZF, ML and DeepSMX-IM detectors is investigated from
the standpoint of number of CMs and given in Table 5.1. Here, W;; and ®;.; are used
for J x I matrices, W1 and ¢y stand for J x 1 vectors. Notice that using complex
numbers is not yet supported by any deep learning frameworks and FCNN part of
DeepSMX-IM operates on real numbers thanks to CNN part. Since one complex
multiplication can be carried out with at least three real multiplications, the number
of multiplications belonging to neural networks parts of Deep-SMX-IM are divided to
three in order to refer them as complex multiplications. The summary of the results
is given in Table 5.2. From Table 5.2, it is observed that while ZF and ML detectors
have the lowest and the highest complexity, respectively, Deep-SMX-IM provides an

intermediate solution with regard to computational complexity.

5.4 Numerical Results for SMX-IM

In this section, the performance of Deep-SMX-IM detector has been evaluated for
Rayleigh fading with Extended Pedestrian A (EPA) channel model [38] employing
BPSK and 4-QAM modulation. The raised cosine filter is used as a GFDM prototype
filter with a roll-off factor of 0.5. The following GFDM parameters are assumed
(K =32,M = 3,N¢, = 8). Note that, it is assumed (K = 32,M = 1) for OFDM
parameters. Training data including 12 x 10° IM groups, is generated at SNR 15dB
according to GFDM and OFDM parameters. In Table 5.5 and 5.4 Deep-SMX-IM fine
detector model parameters and summary can be seen respectively. In order to find a
global minimum, stochastic gradient based Adam optimizer [37], is used with 8 x 10™#

learning rate.

Fig. 5.4 and Fig. 5.5 give comparison result between the Deep-SMX-IM for GFDM
and OFDM with ZF coarse detector for 2 x 2 and 4 x 4, respectively, using BPSK
transmission. As seen from Fig. 5.4, fora 2 x 2 MIMO configuration, it is observed that
the Deep-SMX-IM for GFDM and OFDM achieves 5.5 dB better BER performance
than ZF coarse detector at a BER value of 10™* . In Fig. 5.5, for a 4 x 4 MIMO
configuration, it is observed that Deep-SMX-IM for GFDM and OFDM achieves
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5.5 and 6 dB better BER performance than ZF coarse detector at BER value 1074,

respectively.

Fig. 5.6 and Fig. 5.7 display the BER performance of the Deep-SMX-IM for GFDM
and OFDM with ZF coarse detector for 2 x 2 and 4 x 4, respectively, using 4-QAM
transmissions. From Fig. 5.6, for a 2 x 2 MIMO configuration, it is observed that
the Deep-SMX-IM for GFDM and OFDM achieves 5.5 dB better BER performance
than ZF coarse detector at a BER value of 10~*. In Fig. 5.7, for a 4 x 4 MIMO
configuration, it is observed that Deep-SMX-IM for GFDM and OFDM achieves 3 dB

better BER performance than ZF coarse detector at BER value 1074,

As seen from Fig. 5.4 and 5.5, as spectral efficiency and the modulation order
increases, model’s learning capacity decreases. However, Deep-SMX-IM continues
to retain its advantage over the classical linear detector in all conceivable system
parameters. In Table 5.3, the number of CMs required for Fig. 5.4 and 5.5 are provided.
Notice that, while DeepConvIM in [31] has an intermediate solution for GFDM-IM,

Deep-SMX-IM can be assessed as an efficient solution in terms of computational

complexity.
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Figure 5.4 : BER Performance of ZF and Deep-SMX-IM with ZF Coarse Detector
for 2 x 2 (BPSK)
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Figure 5.6 : BER Performance ZF and Deep-SMX-IM with ZF Coarse Detector for
2 x 2 Schemes (4-QAM)
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Figure 5.7 : BER Performance of ZF and Deep-SMX-IM with ZF Coarse Detector
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Table 5.3 : The Total Number of CMs for ZF, ML and Deep-SMX-IM Detectors for
MIMO-GFDM-IM

| Configuration | ZF | Deep-SMX-IM | ML |
BPSKT =2,R=2 453%x 108 | 4.53x 108 3.29 x 1070
4-QAMT =2,R=2 | 453x10% 453 x10% | 3.08 x 10'3
BPSKT =4,R=4 231 x 10" | 231 x10™" [ 1.83x10'®
4-QAM, T =4,R=4 [ 231 x 10T [ 231 x 10" | 1.08 x10%*

Table 5.4 : Fine Detector Model Summary for SMX-IM

’ Layer \ Output Shape \ Activation Func. ‘

Input (B,2,u,T) None
Conv2d (B,1,u,F) tanh
Flatten (B,uF) None
Dense (B,7) tanh
Dense B,pT) sigmoid

Table 5.5 : Fine Detector Model Parameters for SMX-IM

Antenna Configuration \ Modulation \ Parameter \ Value ‘

2x2 BPSK F 64
T 128

4-QAM F 64

T 256

4 x4 BPSK F 128
T 256

4-QAM F 128

T 256
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6. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, GFDM, GFDM-IM, and SMX-IM receiver schemes have been
investigated and deep learning aided novel receiver structures have been introduced

for future wireless networks.

In the first stage of the thesis, a novel DL-aided GFDM detection and demodulation
scheme, which is constructed by a combination of a linear detector and a neural
network, has been proposed. This application would be the first attempt to exploit
a neural network for GFDM detection. Besides, MMSE detector is proposed for the
coarse detection stage of the cascaded approach. Furthermore, a CNN is exploited
to handle complex signals, i.e., QAM signals, through FCNN. BER performance
of the proposed scheme has been compared to classical linear detector. It has
been demonstrated that the proposed scheme provides significant BER improvement

compared to classical linear detectors.

In the second stage of the thesis, a novel deep convolutional neural network-based
detector, termed as DeepConvIM, is proposed for GFDM-IM scheme. The proposed
scheme is constructed by the combination of a ZF detector and a deep convolutional
neural network. This two-stage approach prevents the getting stuck of neural networks
in a saddle point and enables IM blocks processing independently. The FCNN part
uses only two fully-connected layers, which can be adapted to yield a trade-off between
complexity and BER performance. Also, this scheme has a very simple and flexible
neural network structure, which can be adapted to yield a trade-off between complexity
and BER performance. The proposed method would be the first attempt to exploit a
neural network for GFDM-IM detection. Furthermore, a CNN approach is used to
detect IM scheme for the first time. BER performance of the proposed scheme has been
compared to ZF and ML detectors. It has been demonstrated that the proposed scheme
provides significant BER improvement compared to ZF detector with a reasonable

complexity increase.
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In the third stage of the thesis, a DNN-aided detector is proposed for the combined
application of SMX MIMO transmission, GFDM and IM for the purpose of improving
error performance without increasing complexity. To use CNN and FCNN provide
to learn the transmission characteristics of spatial and frequency multiplexing,
respectively. Note that, a CNN approach provides a flexible structure for SMX
transmission thanks to supporting multi-channel operation and preserving the spatial
dependence. Besides, using IM enables to implement subblock-based detection, which
simplifies the DL. model and reduces the complexity. The proposed method would be
the first appearance to implement DL-aided SMX-IM detection. It has been shown that
the proposed method has an important BER gain competed with ZF detector without

increasing complexity.

In this thesis, DL aided JDD for GFDM, DeepConvIM for GFDM-IM and
Deep-SMX-IM for MIMO-GFDM-IM have been proposed. All models provide
significant BER performance but while DL aided JDD has the highest complexity,
Deep-SMX-IM has the lowest complexity. The use of index modulation techniques
in DL aided detection methods ensures that DL models are of low complexity.
Furthermore, the combination of SMX and IM ensures that the complexity remains
almost the same compared to the linear detector. The significant advantages of
deep learning architectures should be used according to reflecting the characteristics
physical layer. It has been concluded that deep learning aided data detection methods

are a promising area for the next generation of wireless communication.
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