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DERİN ÖĞRENME YARDIMIYLA DATA TESPİTİ
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DEEP LEARNING AIDED DATA DETECTION
FOR FUTURE WIRELESS COMMUNICATION SYSTEMS

SUMMARY

The demand for reliable, fast and effective wireless communication methods go on
with the growing trend thanks to new applications which have challenging technical
requirements. In this sense, orthogonal frequency division multiplexing (OFDM)
with multiple numerologies concept has been proposed to meet the requested key
performance indicators of fifth generation (5G) wireless networks by Third Generation
Partnership Project (3GPP). Although OFDM has solid advantages, e.g., simple
equalization, robustness to frequency selective fading and easy implementation,
the inabilities of OFDM such as high out-of-band (OOB) emission and high
peak-to-average power ratio (PAPR), make it quite disputable to meet the expectations
from the physical layer (PHY) of future wireless access technologies. Therefore,
improved PHY techniques need to be developed for beyond 5G wireless networks.
Generalized frequency division multiplexing (GFDM) is one of the notable attempts
to cope with the challenges of future wireless networks. GFDM provides advantages
in terms of latency, spectral efficiency, and OOB emission because of block-based
structure, reduced overhead of cyclic prefix (CP) and subcarrier-based digital pulse
shaping, respectively. The featured benefit of GFDM is the flexibility that enables
time-frequency engineering according to the requirements of the target application.
Index modulation (IM) techniques offer energy and spectral efficiency by utilizing
transmission entities to convey digital information innovatively. Also, multiple-input
multiple-output (MIMO) has an important ability for a PHY scheme to match the
foreseen requirements beyond the 6G.

Deep learning has lately attracted important attention because of its high performance
to solve computationally-burdened problems in various fields such as object detection,
recommendation systems, and computer vision. Considering the unprecedented
success of deep learning in various problems, researchers are eagerly attempting to
exploit it for wireless communication.

In this thesis, GFDM, GFDM with IM and Spatial Multiplexing (SMX) with IM
scheme has been examined and novel receiver schemes have been proposed in order to
meet the next generation’s physical layer requirements.

In the first stage of the thesis, general concepts about the data detection method for
wireless networks and deep learning methods undertaking in this thesis are explained
shortly.

In the second stage of the thesis, deep learning-aided joint detection and demodulation
(JDD) scheme is proposed for GFDM scheme. Detection and demodulation of the
GFDM blocks include coarse and fine detection stages, which are implemented by
using a linear detector and a neural network in a cascaded manner. This application
would be the first attempt to exploit a neural network for GFDM detection. Besides,

xxi



minimum mean-squared error (MMSE) detector is proposed for the coarse detection
stage of the cascaded approach. Furthermore, a convolutional neural network (CNN)
is exploited to handle complex signals, i.e., quadrature amplitude modulation (QAM)
signals, through fully-connected neural network (FCNN). deep learning-aided JDD
provides bit error ratio (BER) improvement compared to classical linear detectors.

In the third stage of the thesis, a novel deep convolutional neural network-based
detector (DeepConvIM) is proposed for GFDM-IM scheme in order to reduce the
complexity while improving error performance. The proposed detector first applies ZF
detector to the received signal and then uses a neural network, which is composed of
a CNN and an FCNN, to recover the transmitted information from the noisy channel
outputs. This two-stage approach prevents the getting stuck of neural networks in
a saddle point and enables IM blocks processing independently. Also, the FCNN
part has only two fully-connected layers, which can be adapted to yield a trade-off
between complexity and BER performance. Besides, the CNN has three important
advantages that can help improve a deep learning model in terms of sparse interactions,
parameter sharing, and equivalent representations. The proposed method would be the
first attempt to exploit a neural network for GFDM-IM detection. Furthermore, a CNN
approach is used to detect IM scheme for the first time. It has been demonstrated that
the DeepConvIM provides essential BER improvement compared to ZF detector with
a reasonable complexity increase.

In the fourth stage of the thesis, deep learning-aided data detection of SMX
multiple-input multiple-output MIMO transmission with IM (Deep-SMX-IM) has
been proposed in order to improve error performance without increasing complexity.
Deep-SMX-IM has been constructed by combining ZF detector and DL technique.
The main contribution of this proposed method is to use CNN and FCNN to learn
the transmission characteristics of spatial and frequency multiplexing, respectively.
Note that, a CNN approach provides a flexible structure for SMX transmission thanks
to supporting the multi-channel operation and preserving the spatial dependence.
Besides, using IM enables to implement subblock-based detection, which simplifies
the DL model and reduces the complexity. The proposed method would be the
first appearance to implement DL-aided SMX with IM (SMX-IM) detection. The
Deep-SMX-IM provides important BER improvement compared to ZF detector
without increasing complexity.

In this thesis, deep learning-aided JDD for GFDM, DeepConvIM for GFDM-IM
and Deep-SMX-IM for SMX-IM have been proposed. All proposed models provide
significant BER performance but while deep learning-aided JDD has the highest
complexity, Deep-SMX-IM has the lowest complexity. The use of index modulation
techniques in deep learning-aided detection methods ensures that deep learning-aided
models are of low complexity. Furthermore, the combination of SMX and IM ensures
that the complexity remains almost the same compared to the linear detector. It has
been concluded that significant advantages of deep learning techniques should be
engineered to overcome the challenges of wireless communications arising from the
distinct characteristics of time, frequency and spatial domains.
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GELECEK NESİL TELSİZ HABERLEŞME SİSTEMLERİ İÇİN
DERİN ÖĞRENME YARDIMIYLA DATA TESPİTİ

ÖZET

Güvenilir hızlı ve efektif telsiz haberleşme yöntemleri teknik açıdan zorluklara
sahip yeni uygulamalar ile gelişen bir alan olarak devam etmektedir. Bu
çerçevede 5. nesil telsiz haberleşme ağlarının mevcut teknik zorluklarını karşılamak
amaçlı çoklu parametre kümesine sahip dik frekans bölmeli çoğullama (orthogonal
frequency division multiplexing, OFDM) istenen performansları karşılamak amacıyla
önerilmiştir. Ancak telsiz haberleşme kullanıcıları ve uygulamaları sayılarında görülen
artış eğilimi nedeniyle OFDM tabanlı bir fiziksel katmanın yeterliliği yeni nesil fiziksel
katman teknikleri için tartışmalıdır. Bu nedenden dolayı 5. nesil sonrası haberleşme
sistemleri için yeni telsiz haberleşme yöntemlerine ihtiyaç duyulduğu konusunda
yaygın bir düşünce bulunmaktadır.

Genelleştirilmiş Frekans Bölmeli Çoğullama (Generalized Frequency Division
Multiplexing, GFDM), son yıllarda öne çıkmış gelecek nesil haberleşme sistemlerinin
zorluklarıyla başa çıkmak için ön görülen bir fiziksel katman tekniğidir. GFDM zaman
frekans kaynağı planlamasına izin vermesiyle iletim gecikmesine karşı, düşürülmüş
çevrimsel önek (cyclic prefix) ile uzaysal verimliliğe karşı, her alttaşıyıcının bir
süzgeçten geçirilmesiyle OOB yayılıma karşı çözüm getirmektedir.

Indis Modülasyonu (index modulation, IM) modülasyonu spektrum ve uzaysal
verimliliği nedeniyle oldukça ilgi görmüş basit bir sayısal modülasyon tekniğidir.
Geleneksel sayısal modülasyonların tersine, IM iletişim sisteminin yapıtaşları olan
anten, zaman dilimi gibi bilgilerin var olup olmamasını kullanarak bilgi iletimi yapar.
Uzaysal modulasyon bilgi iletmek için antenleri kullanırken, OFDM-IM sistemlerde
alt taşıyıcı pozisyonlarının var/yok mekanizmasıyla bilgi iletimi için kullanılır. Buna
göre bazı alt taşıyıcılar kullanılmaz. Bu sayede kullanılmayan alt taşıyıcıların
enerjileri, kullanılan alt taşıyıcılara aktarılarak bit başına düşen enerji miktarı artırılır
ve bit hata oranı başarımında artış sağlanır.

Gün geçtikçe artan veri hızı ve kullanıcı sayısı, frekans spektrumundaki sınırlılık
nedeniyle araştırmacıları spectral verimliği artırmak için çözüm yollarına yöneltmiştir.
Çok girişli çok çıkışlı sistemler (multiple input multiple output, MIMO) buna çözüm
olarak sunulan yenilikçi bir yaklaşımdır. MIMO sistemlerde alıcı ve verici tarafta eş
zamanlı çoklu anten kümesini kullanarak iletim ve alım yapar. Herhangi bir band
genişliği ve yüksek iletim gücü olmadan yüksek kanal kapasitesi ve yüksek hız oranı
sunar. Yeni nesil fiziksel katman çözümleri için spektral verimliliğe sahip MIMO
iletim teknikleri ile çalışabilmek bir gerekliliktir.

Kablosuz haberleşmede yaşanan tüm bu gelişmelerin yanında, çeşitli modulasyon
tekniklerine ve dalga formlarına göre gönderilen verinin alıcı tarafta tespit edilmeside
yeni nesil haberleşme sistemlerinde geliştirilmesi gerekli bir konu haline gelmiştir.
En büyük olabilirlik yöntemi en optimum yöntemi sunsa da karmaşıklığı oldukça
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yüksektir. Doğrusal tespit yöntemleri karmaşıklığı düşük sonuçlar sunar, ancak
başarımı en büyük olabirlik yöntemine göre oldukça düşüktür. Bu kapsamda yeni
nesil kablosuz haberleşme sistemlerinde alıcı dizaynında karmaşıklığı düşük başarımı
yüksek alıcı modellerine ihtiyaç vardır.

Makine öğrenmesi bilgisayar biliminin hızla gelişen alanlarından biridir. En basit
haliyle verilerden otomatik olarak pattern çıkarma işlemi olarak tanımlanır. Derin
öğrenme ise makine öğrenmesinin alt alanlarından biridir. Son 10 yılda internet
erişimin artmasıyla toplanan verilerin miktarı artmıştır. Bu daha fazla işlem gücü
gerektiren bilgisayarlara ve öğrenme kapasitesi yüksek algoritmalara olan ihtiyacı
artırmıştır. Bu kapsamda grafik işlem birimlerinin (graphical user interrface, GPU)
hesaplamalarda kullanılması ve yeni algoritmaların geliştirilmesiyle derin öğrenme
alanında oldukça ilerleme sağlanmış, nesne tespiti doğal dil işleme bilgisayarlı görü
gibi alanlarda ciddi gelişmeler olmuştur. Derin sinir ağlarını (deep neural network,
DNN) algoritmaların en başında tam bağlanmış sinir ağı (fully connected neural
network, FCNN) gelmektedir. FCNN herhangi bir durum hafızası içermeyen girişten
çıkışa kadar ileriye doğru yol içeren neural networklardır. FCNN yanında, resim
gibi yerel değerlendirme istenilen uygulamalar için evrişimsel sinir ağı (convolutional
neural network, CNN) geliştirilmiştir. CNN uzay boyunca ağırlıkları paylaşır, bu da
FCNN göre daha az parametre ile işlem yapılmasını sağlar. Zamana bağlılığı olan
veriler için ise durum hafıza bilgisi tutan yineleyen sinir ağı (recurrent neural network,
RNN) geliştirilmiştir. RNN’ler ise zamansal boyutta ağırlıklarını paylaşır.

Tüm bu gelişmelerin yanında derin öğrenme telsiz haberleşme içinde ilgi çekici bir
alan haline gelmiştir. Araştırmacıların ilgisini çekmiş, kanal tahmini, kanal kodlama,
OFDM alıcılar ve MIMO tespiti ile ilgili çalışmalar yapılmıştır.

Bu tezde gelecek nesil fiziksel katman gereklilerini karşılamak amacıyla veri
tespiti uygulamaları üzerine çalışılmıştır. Yeni nesil fiziksel katman çözümlerine
önemli bir yer sahip ortogonal ve non-orthogonal dalga formalarının tespiti üzerine
odaklanılmıştır. Spektral ve enerji verimliliği nedeniyle öne çıkan IM ve spectral
verimliği sayesinde öne çıkan MIMO için data tespiti üzerine çalışılmıştır. Yeni alıcı
tasarımı önerilmiştir.

Tezin ilk aşamasında geleneksel veri tespit yöntemlerinden olan en büyük olabilirlik
yöntemi ve lineer tespit yöntemlerinden ve bu tezde uygulanan derin öğrenme
destekli yapılacak kablosuz haberleşme çalışmasında kullanılan genel aşamalardan
bahsedilmiştir. Bu aşamalar eğitim ve test datasının üretilmesi, derin öğrenme
modelinin oluşturulması, eğitimin gerçekleşmesi ve test aşamasıdır.

Tezin ikinci aşamasında GFDM tespiti için derin öğrenme yardımıyla iki katmanlı alıcı
yapısı önerilmiştir. Bu alıcı tarafı ana detektör ve yardımcı detektör kısımlarından
oluşmaktadır. Ana tespit kısmında klasik tespit yöntemleri kullanılırken yardımcı
tespit kısmında derin öğrenme kısmı kullanılmıştır. Derin öğrenme yardımıyla yapılan
ilk GFDM uygulamasıdır. Derin öğrenme çerçevelerinin kompleks sayılar tarafından
desteklenmemesi nedeniyle evrişimsel sinir ağı buna çözüm olarak sunulmuştur. Aynı
zamanda ana tespit kısmında MMSE kullanılması derin öğrenme yardımıyla yapılan
ilk uygulamalardandır. Bu uygulamanın sağladığı bit hata oranı (bit error rate, BER)
başarımı iyi olsa da derin öğrenme kısmı oldukça kompleks bir katman yapısına
sağlanmıştır.
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Tezin üçüncü aşamasında GFDM-IM için bit hata oranını geliştirecek derin evrişimsel
neural network bazlı tespit ve demodulation modeli önerilmiştir. Önerilen sistem ilk
başta alınan sinyali sıfır zorlamalı detektörden geçirdikten sonra CNN ve ardından
FCNN kullanan bir network modeli kullanır. Ana tespit kısmı yapıldıktan sonra IM
bloklar birbirinden bağımsız bir şekilde derin öğrenme tarafından değerlendirilir. IM
blokların birbirinden bağımsız değerlendirilmesi derin öğrenme kısmında basit bir
model yapısı kullanmayı sağlar. GFDM-IM için tespit kısmı için derin öğrenme
destekli ilk uygulamadır. Bu da yaptığımız modelin karmaşıklığını kabul edilebilir
bir şekilde artırarak BER başarımı sağlar.

Tezin dördüncü aşamasında non-orthogonal ve orthogonal dalga formaları için
SMX-IM data tespit kısmı için çalışılmıştır. Burada ana tespit yapıldıktan sonra IM
blokları anten bazlı gruplandırılarak alt bloklara dönüştürülür. Her bir alt blok anten
alt taşıyıcı konumları ve kompleks real boyutu olmak üzere 3 boyutta değerlendirilir.
Her bir alt blok CNN algoritmasından yararlanılarak değerlendirilir. GFDM ve OFDM
MIMO-IM alıcı tarafı için yapılan ilk ve yenilikçi bir algoritmadır. BER başarımında
önemli bir gelişme sağlanırken modelin karmaşıklığı ZF ile hemen hemen aynıdır

Bu tezde GFDM, GFDM-IM ve SMX-IM için derin öğrenme destekli alıcı modeli
önerilmiştir. Önerilen tüm methodlar bit hata oranı başarımını sağlamıştır. GFDM
için karmaşık modelle öğrenim sağlanırken, GFDM-IM için kabul edilebilir bir
karmaşıklıkla model önerilmiştir. SMX-IM için önerilen modelin karmaşıklığı
doğrusal tespit yöntemleri ile karmaşıklığıyla hemen hemen aynı kalmıştır. Derin
öğrenme yardımlı data tespiti metotlarının IM ve SMX-IM modelleri için gelecek
kablosuz haberleşme sistemleri için önem arz edeceği ön görülmektedir.
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1. INTRODUCTION

Wireless communication is a type of data communication that is performed and

delivered without being connected to fixed locations. As wireless communication

has become an essential part of daily activities, the demand for reliable, fast and

effective wireless communication methods goes on with the growing trend. Besides,

the burst of advanced wireless applications i.e. augmented reality, internet of things

and virtual reality, has pushed the development of wireless communication in order to

reach thousandfold capacity, millisecond latency, and massive connectivity.

Deep learning is one of the most rapidly developing and interesting fields of

computer science in recent years. The goal of deep learning algorithms is to find an

approximation of an unknown function. The main advantage of deep learning is high

learning capacity and no need to feature extraction manually. Although the definition

of deep learning was made in 1986, there has been no significant development until

the last 10 years. Thanks to the development of GPU, neural network architecture and

optimization algorithms, deep learning has a significant improvement to solve complex

problems in miscellaneous fields, e.g. natural language processing, object detection,

computer vision. Also, it has become an important area for communication systems,

especially for physical layer problems.

In this sense, it is obvious that the demand for wireless communication continues

to grow with new applications and deep learning application has a significant

development for several areas. Therefore, deep learning aided wireless communication

system comes to prominence for future wireless communication.

1.1 Literature Review

OFDM with multiple numerologies concept has been proposed to meet the requested

key performance indicators of 5G wireless networks by 3GPP [1,2]. Although OFDM

has solid advantages, e.g., simple equalization, robustness to frequency selective fading

and easy implementation, the inabilities of OFDM such as OOB emission and high
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PAPR, make it quite disputable to meet the expectations from the PHY of future

wireless access technologies [3]. Recently, several waveform proposals have been

presented to overcome the above limitations of OFDM.

GFDM [4] is one of the prominent non-CP-OFDM-based waveforms to cope with

the challenges of future wireless networks. GFDM provides advantages in terms

of latency, spectral efficiency, and OOB emission because of block-based structure,

reduced overhead of CP and subcarrier-based digitally pulse shaping, respectively. The

featured benefit of GFDM is the flexibility that enables time-frequency engineering

according to the requirements of the target application.

IM techniques [5] offer energy and spectral efficiency by utilizing transmission

entities to convey digital information innovatively. While SM [6, 7] utilizes the

transmit antennas of a MIMO transmission scheme, OFDM-IM [8–10] utilizes the

subcarrier indices in a multi-carrier system to provide alternative ways for transmitting

information. Taking account the efficiencies provided by IM, GFDM with IM has been

considered and innovative transceiver schemes have been introduced [11–16]. In [11],

the application of the SM-GFDM system has been considered. In [12], the combination

of the IM technique with GFDM has been investigated. In [13], the combination of

GFDM with SM and IM techniques has been considered. In [14], a GFDM-based

flexible IM transceiver, which is capable of generating and decoding various IM

schemes has been proposed. In [15], flexible IM numerology has been proposed to

optimize OOB emission, spectral efficiency, and latency jointly. Furthermore, in [16], a

novel MIMO-GFDM scheme, which combines SMX and MIMO transmission, GFDM

and IM, has been proposed. Despite having optimized transceiver schemes in terms

of OOB emission, spectral and energy efficiency, GFDM-IM schemes suffer high

computational complexity with respect to conventional OFDM schemes.

Deep learning has recently attracted significant attention because of its high

performance to solve computationally-burdened problems in various fields such as

object detection, natural language processing, and computer vision [17]. Considering

the unprecedented success of deep learning in classification problems, researchers are

eagerly attempting to exploit it for wireless communication. In [18], a pair of blind

detectors systems based on the clustering concept has been proposed for SM. In [19], a

deep learning-based framework has been presented for channel estimation problem in
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OFDM. In [20], a ZF detector followed by a deep neural network has been proposed for

OFDM detection. In [21], a deep complex convolutional network has been developed

as an OFDM receiver. In [22] and [23], a communication system has been considered

as an autoencoder and communicating binary information through an impaired channel

has been treated as reconstruction optimization over impairment layers in a channel

autoencoder. This approach has been extended to multi-antenna case in [24]. In

[25–27], deep learning-based MIMO detection schemes have been proposed. Besides,

the use of deep learning has also been considered for uplink/downlink channel

calibration in massive MIMO systems [28]. In [29] and [30], deep learning has been

exploited for OFDM-IM and GFDM, respectively. Furthermore [31], deep learning

aided SMX-IM has been examined. For a comprehensive overview of deep learning

aided wireless communication, interested readers are referred to [32–35].

1.2 Original Contributions

In this thesis study, deep learning aided data detection schemes are proposed for

GFDM, GFDM-IM, and SMX-IM.

In the first stage of the thesis, a deep neural network for GFDM symbol detection and

demodulation is considered. The contributions of the first stage of the thesis can be

summarized as follows:

• The main contribution is to propose a new architecture for the detection and

demodulation of the GFDM blocks including coarse and fine detection stages,

which are implemented by using a linear detector and a neural network in a

cascaded manner. This model is termed as DL-aided JDD.

• Linear MMSE detector is proposed for the coarse detection stage of the cascaded

approach.

• CNN is exploited to handle complex signals, i.e., QAM signals, through FCNN.

• Proposed scheme provides significant BER improvement compared to classical

linear detectors with increasing complexity

In the second stage of the thesis, a deep neural network for GFDM-IM is considered.

The contributions of the second stage of the thesis can be summarized as follows:
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• The main contribution is to propose a novel deep convolutional neural

network-based detector is proposed for GFDM-IM scheme. This model is termed

as DeepConvIM.

• This two-stage approach prevents the getting stuck of neural networks in a saddle

point and enables IM blocks processing independently.

• The FCNN part uses only two fully-connected layers, which can be adapted to yield

a trade-off between complexity and BER performance

• CNN approach is used to detect IM scheme to improve a deep learning model in

terms of sparse interactions, parameter sharing, and equivalent representations for

the first time.

• The proposed scheme has a straightforward and flexible neural network structure,

which can be adapted to yield a tradeoff between complexity and BER performance.

In the third stage of the thesis, a deep neural network for SMX-IM is considered. The

contributions of the third stage of the thesis can be summarized as follows:

• A DNN-aided detector is proposed for the combined application of SMX MIMO

transmission, GFDM, and IM for the purpose of improving error performance

without increasing complexity. This model is termed as Deep-SMX-IM.

• The main contribution of this proposed model is to use a CNN to adapt the

transmission characteristics of spatial multiplexing and to apply a FCNN to learn

the transmitting properties of frequency multiplexing.

• Using IM enables to implement subblock-based detection simplifies the DL model

and reduces the complexity

• A CNN approach provides a flexible structure for SMX transmission thanks to

supporting multi-channel operation and preserves the spatial dependence

• The proposed method would be the first appearance to implement DL-aided

SMX-IM detection

• It has been shown that the proposed method has an important BER gain competed

with ZF detector with the same complexity
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The sections in this thesis are organized as follows. In Section 2, general concepts

about the subjects undertaking in this thesis are explained shortly. In Section 3, the

deep learning aided GFDM detection is presented. Deep convolutional aided detector

is proposed for GFDM-IM in Section 4. Deep Learning Aided Spatial Multiplexing

with IM techniques are analyzed in Section 5. Section 6 presents the results of this

thesis.
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2. GENERAL CONCEPTS

In this section, the general concept of data detector and deep learning method are

explained briefly.

2.1 General Concept of Data Detector

The wireless communication systems can be expressed as

y“Hx`w. (2.1)

where y represents the Rˆ 1 vector of received signals, x denotes T -dimensional

transmitted symbol, H is the Rˆ T channel matrix, w is an Rˆ 1 vector of AWGN

samples with elements distributed as C N p0,σ2
wq.

For wireless communication systems detection of data from noisy measurements of

transmitted signals is defined as a challenging problem. There are a lot of algorithms

various trade-offs between performance and computational complexity.

2.1.1 Maximum likelihood

ML is the optimal detector in sense of minimizing the probability of error. This

detector for the problem in equation 2.1 can be obtained as

x̂“ argmin
xPtX u

‖y´Hx‖2, (2.2)

Here, The ML computes overall probable transmitted vectors given the measurements

y. It is obvious that ML detection suffers from the exponentially increasing

computational complexity.

2.1.2 Linear detector

Linear Detector has low-complexity and simple but their solution is sub-optimal. These

detectors are based linear transformation to the received symbols which then followed a

minimum distance quantization. These methods try to decouple the effects of channel
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spatially. There are two common methods for Linear Detector: These are ZF and

MMSE detectors.

ZF technique is simplest detection technique and multiplies the received symbol vector

by an equalization matrix. This matrix can be expressed as

GZF “H` “
`

HHH
˘´1 HH (2.3)

Here, it is assumed that H is invertible. At the decision step, each element of the filter

output vector

pxZF “GZFy“ x`
`

HHH
˘´1 HHw (2.4)

is mapped onto an element of the symbol constellation by a minimum distance

quantization.

The performance of the ZF detection is reduced because of the
`

HHH
˘´1 HHw. To

reduce for the this noise enhancement, the MMSE detector was proposed. The MMSE

detection takes consider into the noise variance and reduces the noise enhancement by

using the minimum mean square error. The estimation of the noise variance is very

simple and it does not cause high complexity to the overall systems. MMSE detector

uses

GMMSE “
`

HHH`σ
2
wIT

˘´1 HH, (2.5)

where IT is a T ˆT identity matrix. The resulting filter output is given by

pxMMSE “GMMSEy“
`

HHH`σ
2
wIT

˘´1 HHy. (2.6)

The linear MMSE detector achieves better performance at low SNRs than the ZF

detector thanks to noise enhancement.

2.2 General Concept of Deep Learning

The use of general concepts related to deep learning has been shown in Fig 2.1. There

are four main stages in the general concept of deep learning, these are data generation,

building model, training step and testing step.

2.2.1 Data generation
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Figure 2.1 : The General Concept of Deep Learning aided Wireless Communication
Application

Deep learning algorithms need to process large datasets in order to learn a pattern.

The full exponential increase of wireless devices has led to the corresponding growth

of traffic data [36]. This makes it easy to collect data for deep learning-aided

next-generation communication systems. In this thesis, MATLAB simulation has been

used for generating data. Training data has to be generated by fixed SNR. Training

SNR value has a key role because low SNR can model to learn noise patterns and in

contrary high SNR value can a cause solution that is not robust. The testing data has

been generated for a range of SNR values.

2.2.2 Building model

The most important advantage of DL model is that it can solve a nonlinear problem that

can not be solved by a linear expression thanks to its nonlinear activation functions.

Activation functions also provide to normalize the output of each neuron. That is why

activation functions, which are used in the last layer in deep learning aided detection
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problems, are so essential. If symbol detection is required by a neural network or bit

detection, it is necessary to use an activation function either ftanhpxq “
ex´ e´x

ex` e´x , whose

range is p´1,1q; or fsigmoidpxq “
1

1` e´x , whose range is p0,1q, respectively. In this

thesis, the used activation function can be seen in Fig. 2.4.

The simplest model of DNN is defined as a neuron, which is inspired by the neuron of

the human brain, as seen in Fig. 2.3. Each neuron gets an input vector, multiplies them

by their weights and applies activation functions. This process can be represented as:

h1 “ φpWT x`bq (2.7)

where h1 represents output of each neuron, x is an input vector and W , b, φ denote

weight matrix, bias term and activation functions, respectively .

A fully connected neural network, which consists of neurons, defines that each neuron

in one layer is connected the all other neurons in the previous layer and next layer,

but neurons within a single layer don’t share any connections as seen in Fig 2.2. A

FCNN describes as f px0;θ q : RN0 Ñ RNL for l “ 1 . . .L, where x, L and θ are an input

vector, number of layer and trainable parameters, respectively. Throughout the iterative

process, a FCNN can be expressed as

xl “ flpxl´1;θlq “ φpWT
l xl´1`blq (2.8)

for lth layer. Here, φ is an activation function and Wl , bl are weights and bias term,

respectively.

The convolution neural network is a specialized DL model and represents a vision

of the human brain. It consists of convolution layer whose learning parameters are

defined as kernel filter W f , for f “ 1 . . .F . A convolution layer generally gets a

multidimensional array. During the forward pass, each kernel filter has convolved a

part of the input vector which has the same dimension, i.e. kernel filter has slid across

an input vector according to stride size. In doing so, because the same kernel filter

weights are used throughout the entire input data, the complexity decreases according

to FCNN. The sum of the products of the corresponding elements is the output of the

convolution layer. This process can be expressed as
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Y f
i, j “

a´1
ÿ

k“0

b´1
ÿ

l“0

W f
a´k,b´lX1`spi´1q´k,1`sp j´1q´l (2.9)

where s is stride, W is aˆ b kernel filter, X denotes α ˆβ input matrix, Y represents

α 1 “ 1`
α`a´2

s
ˆ β 1 “ 1`

β `b´2
s

feature matrix. The convolution operator

provide to reduce the input image to its important features. Besides, CNN has

important advantages, these are sparse interactions, parameter sharing, equivalent

representations [17].

The parameters used to set the model are hyperparameter and model parameters. While

hyperparameter represents untrainable parameters such as layer size, a number of the

neuron, learning rate, model parameters represent trainable parameters weight and

bias. Hyperparameter, which needs to be set before the training process starts, the

choice is a tricky and unknown step, because there is no strict rule or formula to choose

right hyperparameters. It depends on searching and tuning operations over the deep

learning model.

2.2.3 Training stage

Deep learning model consists of multiple layers, connections between these layers, a

lot of parameters which are required to be tuned. The main goal of DL is to optimize

model parameters in order to minimize loss functions. A loss function quantifies the

difference between the estimated output of the model and the correct output. In this

thesis, the mean squared error is used as a loss function. It can be explained as

lossMSEpy, ŷq “
1
n

n
ÿ

t“1

py´ ŷq2 (2.10)

where y and ŷ represent expected output and calculated output respectively. The cost

function calculates an average of loss function using a part of a training data set.

According to this cost function, gradient descent-based optimization methods try to

adjust model parameters iteratively. This optimization method calculates the local

gradient of the cost function according to each model parameter, and its goal is to

descend gradient until the algorithm converges to a minimum. This process can be

expressed as

θ` “ θ ´η5 losspθ q, (2.11)
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where η represents learning rate, which describes as size of the gradient descents step,

and θ refers to trainable parameters. In order to find global minimum, a lot of gradient

descent algorithms have to be developed such as Adam [37], Adagrad, RMSProp and

Momentum. In this thesis, the latest trend optimization Adam [37] is used as gradient

descent methods.

The main purpose of the training model is not to learn the training data very well, but

to give the same result in the test data. Therefore models are expected to find low

generalization error as a result of training. Over-fitting is defined as the model has

a high generalization error. Preventing overfitting has an important role during the

training stage. Dropout scheme, adding regularization terms, early stopping are some

methods for preventing overfitting.

Training deep learning models involves intensive matrix multiplications on an

extremely dataset. This type of computing can be time-consuming. GPU, which

has a large number of cores and specialized in running multiple computations

simultaneously, can speed up the training process significantly. Models with high

accuracy can be achieved in a short time with GPU.

In this thesis, three different DL model has been constructed for data detection. The

first model, termed as DL-aided JDD, is built so complex. But DeepConvIM and

Deep-SMX-IM have a very basic structure thanks to index modulation and spatial

multiplexing. So, it is concluded that DeepConvIM and Deep-SMX-IM are more

useful for future wireless networks thanks to index modulation.

2.2.4 Testing stage

After the training stage, model must be tested with the generated test data for each SNR

value by using Monte Carlo simulation. If the training results do not give sufficient

BER performance as reasonable increasing complexity, the hyper-parameters need to

be changed and the model should be trained again.
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3. GENERALIZED FREQUENCY DIVISION MULTIPLEXING

In this stage, GFDM scheme has been examined and deep learning aided JDD scheme

has been proposed. In Section I, the system model for GFDM is presented. In Section

II, deep learning aided GFDM detection and demodulation is presented. Numerical

results are provided in Section III.

3.1 System Model for GFDM

A GFDM symbol d “ rd0,d1, . . . ,dM´1s
T has a block-based structure, which can

be decomposed into M subsymbols, each consisting of K subcarriers, i.e., dm “

rd0,m,d1,m, . . . ,dK´1,ms
T, for m “ 0,1, . . . ,M ´ 1. Here, dk,m is the symbol from a

2γ -valued complex constellation, where γ is the modulation order, transmitted on

the k-th subcarrier of the m-th subsymbol of the GFDM symbol, p¨qT shows the

transposition of a vector. The total number of symbols in a GFDM symbol equals

to N “ KM. The block diagram of the GFDM transceiver is shown in Fig. 3.1. At the

baseband processing stage of the GFDM transmit signal, each dk,m is cyclically-filtered

by using a pulse shape

gk,mpnq “ gppn´mKqmodNqexp
ˆ

j2π
kn
K

˙

, (3.1)

where n denotes the sampling index. Here, gk,mpnq is a time and frequency shifted

version of a prototype filter gpnq, where the modulo operation and the complex

exponential perform the shifting operations in time and frequency, respectively. Then,

the overall GFDM transmit signal is obtained by superposition of all transmit symbols

xpnq “
K´1
ÿ

k“0

M´1
ÿ

m“0

dk,mgk,m pnq . (3.2)

After collecting the filter samples in a vector gk,m “
“

gk,m p0q , . . . ,gk,m pN´1q
‰T, Eq.

3.2 can be rewritten as

x“ Ad, (3.3)
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where A represents a KMˆKM transmitter matrix [4] with the following structure:

A“ rg0,0, . . . ,gK´1,0,g0,1, . . . ,gK´1,1, . . . ,gK´1,M´1s . (3.4)

As a last step of the GFDM baseband processing at the transmitter side, a CP with

length NCP is added to x to make the convolution with the channel circular. The

resulting vector

rx“
”

xpKM´NCP`1 : KMqT ,xT
ıT

, (3.5)

where xpa : bq shows all elements of x with indices from a to b, inclusive of a and b,

is transmitted over a frequency-selective Rayleigh fading channel.

At the receiver side, assuming that perfect synchronization is ensured, CP is longer

than the tap length of the channel pNChq and the wireless channel stays constant during

the transmission of a GFDM block, the received signal vector y can be obtained as

y“Hx`n (3.6)

after the removal of CP. Here, y “ ryp0q,yp1q, . . . ,ypN ´ 1qsT is the vector of the

received signals, H is the NˆN circular convolution matrix constructed from the CIR

coefficients given by h“ rhp1q,hp2q, . . . ,hpNChqs
T, and n is an Nˆ1 vector of AWGN

samples. The elements of h and n follow C N p0,1q and C N p0,σ2
wq distributions,

respectively. After substituting Eq. 3.3 in Eq. 3.6, it can be obtained as

y“HAd`n“ rHd`n. (3.7)

Eq. 3.7 enables to use JDD, which can be implemented as

d̂“ By. (3.8)

Here, B is a KMˆKM receiver matrix. There are mainly two options for B. The

ZF receiver BZF “ rH´1 removes any self-interference completely but it enhances

the noise. The MMSE receiver BMMSE “
´

R2
n`

rHH
rH
¯´1

rHH, where R2
n is a

covariance matrix of the noise, makes a trade-off between self-interference and noise

enhancement. Then, original information bits are retrieved after demapping and

decoding stages.
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Figure 3.2 : Block Diagram of the DL-aided JDD.

3.2 Deep Detection and Demodulation for GFDM

The block diagram of the proposed DL-aided JDD scheme proposed for JDD block of

the GFDM receiver is shown in Fig 3.2. In [20], it is stated that, while using neural

networks for detecting communication signals, estimating the transmitted signal from

very beginning may suffer from slow convergence. Therefore, in [20], a cascaded

detection approach has been proposed. Inspired from [20], two-stage detection and

demodulation for GFDM receiver has been proposed.

The first stage of the proposed detector is coarse detection. In this stage, thanks

to system model in Eq. 3.7, modified received signal ŷ “ By is obtained by using

well-known linear detectors such as ZF and MMSE.

The second stage of the proposed detector uses deep neural network to implement fine

detection, which is expressed as

d̂“ θ pŷq. (3.9)

Here, θ includes the first part of the fine detector trainable parameters, which is CNN

parameters (θCNN), as well as second part of the fine detector trainable parameters,

which is FCNN parameters (θFCNN). One of the challenging problems faced by

deep detection is to handle complex numbers. Currently, using complex numbers

in neural networks is not yet supported by any popular DL frameworks. In order to

use common tools for DL, complex values have to be expressed as real values without

losing relationship between real and imaginary parts of the complex numbers. The first

part of the fine detector performs complex to real mapping using CNN, which can take

multi-dimensional input. The complex to real mapper convolves the received signal y
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with the kernel filter up “
“

up,R up,I
‰

, adds bias cp, for p“ 1, ...P, with stride 1, and

the modified received signal can be expressed as

y̌ppnq “ Relupup,R ˚ℜpypnqq`up,I ˚ℑpypnqq` cpq, (3.10)

where Relu is an activation function, for n “ 0, ...N ´ 1. Here up and cp are called

complex to real mapper trainable parameters. The second part of the fine detector

performs deep detection by using FCNN. First, FCNN based deep detector can be

constructed differently with non-trainable parameters, e.g., number of layers, batch

size, different optimizer, activation functions, which affect the training duration and

accuracy. Second, the deep detector gets the output of the complex to real mapper

and performs deep detection by using θFCNN “ tW,bu trainable parameters, where

W “
“

wT
1 ,w

T
2 , ...,w

T
Ls contains weights parameters and b “ rb1,b2, . . . ,bLs contains

bias parameters, L indicates the number of layers. The number of neurons in

each layer can be different, hence, weight parameters of any layer represents wl “
“

wlp1q,wlp2q, ...,wlpTlqs, where Tl represents the number of neurons in the l-th layer.

First layer of the FCNN gets the output of complex to real mapper x̂cnn and generates

the output

e1 “ Relupw1x̂cnn`b1q. (3.11)

Then, the second layer gets the e1 and generates the output

e2 “ Relupw2e1`b2q. (3.12)

This process continues until the last layer, however tanh, which is suitable for QAM

modulations, is used as the last layer activation function instead of Relu. After that,

the output of the FCNN can be obtained as

x̂ f cnn “
“

ℜpxp0qq, ...,ℜpxpN´1qq,ℑpxp0qq, ...,ℑpxpN´1qq
‰

. (3.13)

Finally, the third part of the fine detector performs real to complex mapping by

arranging the output of the FCNN and constructs the estimated GFDM block d̂.

3.3 Numerical Results for GFDM

In this section, the BER performance of the proposed DL aided GFDM receiver has

been evaluated by computer simulations for Rayleigh fading with EPA channel model
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Table 3.1 : GFDM Simulation Parameters

Description Parameter Value
# subcarriers K 32
# subsymbols M 3
Pulse shaping filter g RC
Roll-off factor a 0.5
Length of cyclic prefix NCP 32
# channel taps for EPA channel NCh 7

[38]. GFDM parameters used in the simulations are given in Table 3.1. The chosen

pulse shape for the GFDM prototype filter is the RC filter with a roll-off factor (a)

of 0.5. For the coarse detection stage, MMSE and ZF linear detectors are used. For

the fine detection stage, model parameters are shown in Table 3.2. According to these

parameters, fine detector models are constructed as shown in Table 3.3. Here, while the

first two layers implement complex to real mapping, the rest of the layers implement

deep detection. Tl is shown as output shape column in Table 3.3. There is no clear

study of setting the training or testing SNR for DL-aided detection. The detection

SNR range for simulations is 0 dB to 14 dB with 2 dB step. Accordingly, training SNR

range is determined between 7 dB to 14 dB with 1 dB step. Two common optimizers,

namely Adam [37] and Adadelta [39], are used. Adam optimizer is used as gradient

descent algorithms. Before the start of training, θ is initialized uniformly. Training

process takes from 1200 epoch. Fine detector model is constructed using Keras [40]

(back-end Tensorflow-GPU [41]) and trained on Google Colab, providing GPUs in

the cloud environment. For MMSE coarse detection, training data consist of 16ˆ104

GFDM symbols and testing data consist of 9ˆ 104 symbols. For ZF-based coarse

detection, training data consist of 4ˆ 105GFDM symbols and testing data consist of

9ˆ 104 symbols. The uniform distribution of the data to be trained is important for

proper learning. Therefore, training data is shuffled before training.

Fig. 3.3 compares the BER performance of the MMSE-JDD and the DL-aided JDD

with MMSE coarse detector for BPSK transmission. From Fig. 3.3, it is observed that

the DL-aided JDD with MMSE coarse detector provides approximately 4 dB better

BER performance than MMSE-JDD for Adam optimizer. Also, BER performance

gains of the DL-aided JDD with MMSE coarse detector is increased to 6 dB for

Adadelta optimizer.
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Table 3.2 : Fine Detector Model Parameters for GFDM

Description Parameter Value
# Kernel Filter P 96
# Layer L 7
Learning Rate lr 0.0001
Dropout Rate r 0.1
Batch Size B 1000

Table 3.3 : Fine Detector Model Summary for GFDM

Layer Output Shape Activation Func.
Input (B,N) None

Conv2d+Dropout(r) (B,N,2,N) Relu
Flatten+Dropout(r) (B,N2ˆ 2) Relu
Dense+Dropout(r) (B,1000) Relu
Dense+Dropout(r) (B,1000) Relu
Dense+Dropout(r) (B,1000) Relu
Dense+Dropout(r) (B,1000) Relu
Dense+Dropout(r) (B,1000) Relu
Dense+Dropout(r) (B,1000) Relu
Dense+Dropout(r) (B,Nˆ2) tanh

Figure 3.3 : BER Performance of MMSE-JDD and DL-aided JDD with MMSE
Coarse Detector for BPSK Transmission.

Fig. 3.4 displays the BER performance of the ZF-JDD and the GFDM-ZF, the

DL-aided JDD with ZF coarse detector for BPSK transmission. From Fig. 3.4, it is

observed that the DL-aided JDD with ZF coarse detector provides approximately 5 dB
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Figure 3.4 : BER Performance of ZF-JDD and DL-aided JDD with ZF Coarse
Detector for BPSK Transmission.

better BER performance than ZF-JDD for Adam optimizer. For Adadelta optimizer,

the DL-aided JDD with ZF coarse detector provides 3 dB additional BER gain.
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4. GENERALIZED FREQUENCY DIVISION MULTIPLEXING WITH
INDEX MODULATION

In this stage, GFDM-IM scheme has been examined and deep learning aided

GFDM-IM detection scheme has been proposed. In Section I, the system model for

GFDM-IM is presented. In Section III, Deep-SMX-IM is presented. Numerical results

are given in Section III.

4.1 System Model for GFDM-IM

The block diagram of the GFDM-IM transceiver has been shown in Fig 4.1. Consider

a GFDM symbol with M subsymbols each consisting of K subcarriers, the m-th

subsymbol is partitioned into L IM blocks, each containing u “ K{L subcarrier

positions. In an IM block, only v out of u subcarrier positions are selected

as active and used to transmit QAM symbols from Q-ary signal constellation S

with Q elements. Thus, an IM block can transmit a p-bit binary message sl
m “

“

sl
m p1q ,s

l
m p2q , . . . ,s

l
m ppq

‰T . In each IM block, pq “ v log2pQq bits of incoming p-bits

sequence are used as QAM-bits. The remaining pi “ tlog2 pC pu,vqqu bits of this

sequence are used to determine the active subcarrier positions. Therefore, it can

be obtained α “ 2pi possible realizations. Here, C pµ,νq is the binomial coefficient

and t¨u denotes the floor function. Note that active subcarrier positions can be

determined using a look-up table or combinatorial methods [8]. As a result, IM blocks

dl
m “

“

dl
m p1q ,d

l
m p2q , . . . ,d

l
m puq

‰T , where dl
m pγq P t0,S u, is constructed according to

p input bits [12]. Then, IM blocks are first concatenated to obtain the GFDM-IM

subsymbol dm “ rd0,m,d1,m, . . . ,dK´1,ms and the resulting GFDM-IM subsymbols are

combined to form the GFDM-IM symbol

d“ rd0,0, . . . ,dK´1,0,d0,1, . . . ,dK´1,1, . . . ,dK´1,M´1s , (4.1)

where dk,m P t0,S u, for k “ 0, . . . ,K´1,m “ 0, . . . ,M´1, is the data symbol of k-th

subcarrier on m-th subsymbol. After that, the GFDM-IM symbol d is modulated using
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a GFDM modulator and the resulting GFDM transmit signal can be expressed as

x“ Ad, (4.2)

where A is an NˆN GFDM modulation matrix [4], N “KM. Finally, a CP with length

NCP is attached to x and the resulting vector x̃ “
”

xpKM´NCP`1 : KMqT ,xT
ıT

is

transmitted over a frequency-selective Rayleigh fading channel.

At the receiver side, assuming that perfect synchronization is ensured, CP is longer

than the tap length of the channel pNChq and the wireless channel stays constant through

the broadcast of a GFDM symbol, after the removal of CP the received signal vector y

can be obtained as

y“Hx`n (4.3)

where y “ ryp0q,yp1q, . . . ,ypN ´ 1qsT denotes the vector of the received signals, H

represents the NˆN circular convolution matrix constructed from the CIR coefficients

given by h “ rhp1q,hp2q, . . . ,hpNChqs
T, and n is an Nˆ 1 vector of AWGN samples.

The elements of h and n follow C N p0,1q and C N p0,σ2
wq distributions, respectively.

After substituting Eq. 4.2 in Eq. 4.3, it is obtained the equivalent channel of the

GFDM-IM scheme as

y“HAd`n“ rHd`n. (4.4)
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Figure 4.2 : Block Diagram of the DeepConvIM

4.2 Deep Detection and Demodulation for GFDM-IM

The block diagram of the proposed deep convolutional neural network-based joint

GFDM-IM detection and demodulation scheme, termed as DeepConvIM, is shown

in Fig 4.2. GFDM-IM subcarriers are non-orthogonal to each other thank to

non-rectangular pulse shaping unlike OFDM-IM. Therefore, the inherent ICI prevents

the frequency domain decoupling of GFDM-IM subcarriers for both SISO and MIMO

transmission schemes. As a result, simultaneous detection of all subcarriers is required

for optimum decision. Because this process is computationally infeasible, for the

optimum detection problem of GFDM-IM, low complexity solutions are required.

Inspired from [20], the proposed detector has two parts as coarse detector and fine

detector. This two stage approach prevents getting stuck of neural network in a saddle

point and enables the processing IM blocks independently. First, coarse detector uses

ZF detector in order to process channel and GFDM modulation effects jointly. The

output vector of coarse detector can be expressed as

d̂“
´

rHH
rH
¯´1

rHHy. (4.5)

Since coarse detector operates on the equivalent channel of the GFDM-IM scheme,

the remaining parts can handle the IM blocks individually. Therefore, fine detector

processes the IM blocks independently. IM Block Splitter partitions the pre-processed

received vector d̂ into IM blocks d̂l
m “

“

d̂l
m p1q , d̂

l
m p2q , . . . , d̂

l
m puq

‰T
. The fine detector

part of DeepConvIM uses a CNN followed by a FCNN, which is expressed as

ŝl
m “ θ pd̂l

mq, (4.6)
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where θ represent the total of trainable parameters. The CNN part of the fine detector

convolves the IM block d̂l
m with the kernel filter at “

“

at,R at,I
‰

, adds bias ct , for

t “ 1, ...T , with stride 1, and the modified received IM block can be expressed as

ďl
m,tpγq “ tanhpat,R ˚ℜpd̂l

mpγqq`at,I ˚ℑpd̂l
mpγqq` ctq, (4.7)

where tanh is an activation function, for γ “ 1, ...,u. Here at and ct are called

convolution trainable parameters. Notice that unlike [29], DeepConvIM does not need

the energy of the received signal. The FCNN part of the fine detector gets the output

of the CNN and performs deep detection by using tW,bu trainable parameters, where

W “
“

w1,w2s contains weights parameters and b “ rb1,b2s contains bias parameters.

That is, The FCNN part uses only two fully-connected layers, hidden layer has τ nodes

the output layer has p nodes as expected. The output of fine detector can be expressed

as

ŝl
m “ sigmoidpw2ptanhpw1ďl

m,t `b1qq`b2, (4.8)

where sigmoid is an activation function. Finally, IM Block Combiner merges the

output of the fine detector and forms the transmitted information bits.

The aim of the training stage of DeepConvIM is to find θ parameters in order to

minimize the cost function, which calculates averages of loss function for total training

datasets. Loss functions can be expressed as psl
m, ŝl

mq “ }sl
m´ ŝl

m}. Before training,

GFDM-IM simulation training data is generated and divided into batch (B). At first, the

θ is randomly initialized. Throughout the training, θ is updated according to stochastic

gradient descent (SGD) algorithm for every batch, which is expressed as

θ` “ θ ´η5 costpsm, ŝmq, (4.9)

where η is learning rate.
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Table 4.2 : Summary of the Computational Complexity of ZF, ML and DeepConvIM
Detectors for GFDM-IM

Detector Total Complexity (CMs)
ZF 3N3`N2 p1`NChq`αQvML
ML pαQvq

ML
pNvML`Nq`NChN2

DeepConvIM 3N3`N2 p1`NChq`puT p2`λ qqML{3`puT τ` τλ ` τ p` pδ qML{3

Table 4.3 : A Look-up Table Example for u“ 4,v“ 2.

Bits Indices IM block

r0 0s t1,2u
“

sχ sζ 0 0
‰T

r0 1s t2,3u
“

0 sχ sζ 0
‰T

r1 0s t3,4u
“

0 0 sχ sζ

‰T

r1 1s t1,4u
“

sχ 0 0 sζ

‰T

4.3 Complexity Analysis for GFDM-IM

Computational complexity of ZF, ML and DeepConvIM detectors has been

investigated from the standpoint of number of CMs and given in Table 4.1. Here, ΨJˆI

and ΦJˆI are used for Jˆ I matrices, ψJˆ1 and φJˆ1 stand for Jˆ1 vectors. Notice that

using complex numbers is not yet supported by any popular deep learning frameworks

and FCNN part of DeepConvIM operates on real numbers thanks to CNN part. Since

one complex multiplication can be carried out with at least three real multiplications,

the number of multiplications belonging to neural networks parts of DeepConvIM are

divided to three in order to refer them as complex multiplications. The summary of

the results is given in Table 4.2. From Table 4.2, it is observed that while ZF and

ML detectors have the lowest and the highest complexity, respectively, DeepConvIM

provides an intermediate solution with regard to computational complexity.

4.4 Numerical Results for GFDM-IM

In this section, the BER performance of DeepConvIM has been compared to ZF and

ML detection methods. The chosen pulse shape for the GFDM prototype filter is the

RC filter with a roll-off factor (a) of 0.5. The active subcarrier indices are selected
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Table 4.4 : The Total Number of CMs for ZF, ML and DeepConvIM Detectors for
GFDM-IM

Configuration ZF DeepConvIM ML
BPSK, K “ 32,M “ 1 1.07ˆ105 1.18ˆ105 2.33ˆ1012

4-QAM, K “ 32,M “ 1 1.09ˆ105 1.56ˆ105 1.48ˆ1022

16-QAM, K “ 32,M “ 1 2.37ˆ105 4.20ˆ105 4.15ˆ1036

BPSK, K “ 8,M “ 1 2.08ˆ103 5.15ˆ103 1.07ˆ104

BPSK, K “ 8,M “ 3 4.61ˆ104 5.54ˆ104 5.23ˆ109

Table 4.5 : Fine Detector Model Parameters for GFDM-IM

Description Parameter Value
# Kernel Filter (for BPSK transmission) T 16
# Kernel Filter (for 4-QAM transmission) T 32
# Kernel Filter (for 16-QAM transmission) T 64
# Nodes of Hidden Layer (for BPSK transmission) τ 64
# Nodes of Hidden Layer (for 4-QAM transmission) τ 128
# Nodes of Hidden Layer (for 16-QAM transmission) τ 256
Learning Rate lr 0.0008
Batch Size B 1000

Table 4.6 : Fine Detector Model Summary for GFDM-IM

Layer Output Shape Activation Func.
Input (B,2,u,1) None

Conv2d (B,1,u,T) tanh
Flatten (B,uT) None
Dense (B,τ) tanh
Dense (B,p) sigmoid

using the lookup table in Table 4.3. Fine detector model parameters and summary are

given in Table 4.5 and 4.6, respectively. During training stage, SNR is set to 15dB,

Adam optimizer [37], which is SGD-based, is used, and the learning rate is set to

8ˆ 10´4. The DeepConvIM model is trained in a short time, 60 epochs is enough to

get significant results. A GFDM-IM training data set, including 16ˆ104 symbols, and

a GFDM-IM testing data set, including 3ˆ 104 symbols are generated for each SNR

value regarding K “ 32. For K “ 8, training data and testing data include 32ˆ104 and

6ˆ104 GFDM-IM symbols, respectively.
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DeepConvIM model is constructed using Keras [40] (back-end Tensorflow [41]) and

trained on Google Colab, providing tensor processing units (TPUs) in the cloud

environment.

Fig. 4.3 compares the BER performance of the ZF and the DeepConvIM with ZF

coarse detector for BPSK transmission when K “ 32 and M “ 1. From Fig. 4.3, it is

observed that the DeepConvIM provides approximately 6 dB better BER performance

than ZF at a BER value of 10´4 .

Fig. 4.4 compares the BER performance of the ZF and the DeepConvIM with ZF

coarse detector for 4-QAM and 16-QAM transmissions when K “ 32 and M“ 1. From

Fig. 4.4, it is observed that the DeepConvIM provides approximately 4.5 and 1 dB

better BER performance than ZF for 4-QAM and 16-QAM transmissions, respectively,

at a BER value of 10´4.

Fig. 4.5 compares the BER performance of the ZF, ML and the DeepConvIM with

ZF coarse detector for BPSK transmission, when K “ 8, M “ p1,3q. From Fig. 4.5,

at a BER value of 10´4, while DeepConvIM provides 6 dB BER improvement with

respect to ZF detector for M “ 3, the BER improvement of DeepConvIM with ZF

coarse detector with respect to ZF detector is increased to 8 dB when M “ 1. Also,

ML detector has 8 dB BER improvement with respect to DeepConvIM when M “ 1.

From Fig. 4.3 and 4.4, it is observed that as the modulation order increases, the learning

capacity of the model decreases. From Fig. 4.4, it is observed that when the number

of subsymbols increases, performance of the model decreases. On the other hand,

from Fig. 4.3 and 4.5, it is observed that when the number of subcarriers decreases,

performance of the model increases. The number of CMs needed by the detectors in

Fig. 4.3, 4.4 and 4.5 are given in Table 4.4. As mentioned earlier, DeepConvIM can

be evaluated as a intermediate solution regarding computational complexity.
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Figure 4.3 : BER Performance of ZF and DeepConvIM with ZF Coarse Detector for
BPSK transmission, (K = 32, M = 1)

.

Figure 4.4 : BER Performance of ZF and DeepConvIM with ZF Coarse Detector for
4-QAM and 16-QAM transmissions (K = 32, M = 1).
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Figure 4.5 : BER Performance of ZF and DeepConvIM with ZF Coarse Detector for
BPSK Transmission (K = 8, M = (1 , 3)).
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5. SPATIAL MULTIPLEXING WITH INDEX MODULATION

In this stage, SMX-IM for GFDM and OFDM scheme has been examined and deep

learning aided SMX-IM detection scheme has been proposed. In Section I, the

system model for SMX-GFDM-IM and SMX-OFDM-IM is presented. In Section II,

Deep-SMX-IM is presented. Numerical results are given in Section III.

5.1 System Model for SMX-IM

Consider a MIMO system employing T transmit and R receive antennas. The

block diagram of the SMX-GFDM-IM transmitter is given in Fig. 5.1. The

MIMO-GFDM-IM transmitter gets a total of PT information bits enter for the

transmission of each frame. A GFDM symbol, each consisting of M subsymbols with

K subcarriers, is partitioned into L IM blocks, each containing u “ MK{L subcarrier

positions. In an IM block, only v out of u subcarrier positions are selected as active and

used to transmit QAM symbols from Q-ary signal constellation S with Q elements.

Thus, an IM block can transmit a p-bit binary message sl
t “

“

sl
t p1q ,s

l
t p2q , . . . ,s

l
t ppq

‰

,

for l “ 1, . . . ,L and P “ pL. In each IM block, pq “ v log2pQq bits of incoming

p-bits sequence are used as QAM-bits. The remaining pi “ tlog2 pC pu,vqqu bits of this

sequence are used to determine the active subcarrier positions with using a look-up

table or combination methods [8]. Therefore, λ “ 2pi possible realizations is obtained

as seen from 5.2. Here, C pµ,νq is the binomial coefficient. As a result, IM blocks

dl
t “

“

dl
t p1q ,d

l
t p2q , . . . ,d

l
t puq

‰T , where dl
t pγq P t0,S u, is constructed according to p

input bits [12]. Then, the resulting IM blocks are merged to form the GFDM-IM

symbol

dt “ rdt,0,0, . . . ,dt,K´1,0,dt,0,1, . . . ,dt,K´1,1, . . . ,dt,K´1,M´1s (5.1)

where dt,k,m P t0,S u, for k “ 0, . . . ,K´ 1,m “ 0, . . . ,M´ 1, t “ 1, . . . ,T is the data

symbol of k-th subcarrier on m-th subsymbol of a GFDM symbol belonging to t-th

transmit antenna. After that, the GFDM-IM symbol dt is modulated using a GFDM
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modulator and the resulting GFDM transmit signal can be obtained as

xt “ Adt, (5.2)

where A denotes an N ˆ N GFDM modulation matrix [4], N “ MK. Fi-

nally, CP with length NCP is attached to xt and the resulting vector x̃t “
”

xt pMK´NCP`1 : MKqT ,xt
T
ıT

is transmitted over a frequency-selective Rayleigh

fading channel. At the receiver side, assuming that perfect synchronization is ensured,

CP is longer than the tap length of the channel pNChq and the wireless channel remains

constant through the broadcast of a GFDM symbol, the received signal can be obtained

as
»

—

–

y1
...

yR

fi

ffi

fl

“

»

—

–

H1,1A . . . HT,1A
... . . . ...

HR,1A . . . HR,T A

fi

ffi

fl

»

—

–

d1
...

dT

fi

ffi

fl

`

»

—

–

n1
...

nR

fi

ffi

fl

(5.3)

after the removal of CP. Here, yR “ ryrp0q,yrp1q, . . . ,yrpN ´ 1qsT represents the

vector of the received signals, Hr,t , for t “ 1, . . . ,Tr “ 1, . . . ,R,, denotes the N ˆN

circular convolution matrix constructed from the CIR coefficients given by hr,t “

rhr,tp1q,hr,tp2q, . . . ,hr,tpNChqs
T, and nr is an N ˆ 1 vector of AWGN samples. The

elements of hr,t and nr follow C N p0,1q and C N p0,σ2
wq distributions, respectively.

After substituting Eq. 5.2 in Eq. 5.3, the equivalent channel of the GFDM-IM scheme

is obtained as

y“ rHd`n. (5.4)
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Figure 5.2 : GFDM-IM Mappers at Each Branch of the Transmitter.

5.2 Deep Detection and Demodulation for SMX-IM

The block diagram of the proposed deep learning-aided data detection of spatial

multiplexing scheme, termed as Deep-SMX-IM, is given in Fig 5.3. The channel

information is assumed to be perfectly known at the receiver. The proposed detector is

built as two stages as coarse detector and fine detector. It also has two intermediate

steps for regularizing coarse detector output and fine detector outputs, which are

SMX-IM Block Splitter and Combiner, respectively. As a first stage, coarse detector

applies ZF detector to handle channel and GFDM modulation effects together and the

coarse detector’s output can be given by
»

—

—

—

–

ψ1
ψ2
...

ψT

fi

ffi

ffi

ffi

fl

“

´

rHH
rH
¯´1

rHHy, (5.5)

where ψt “ rψ
1T

t ,ψ2T

t , ...,ψLT

t sT , for t “ 1, ...T and for l “ 1, ...L, ψ l
t denotes a uˆ 1

vector. After coarse detector, ψ l
t are subdivided into sub-block IM form by SMX-IM

Block Splitter and the resulting matrix can be expressed as

ΨΨΨ
l
“

»

—

–

ψ l
1p1q . . . ψ l

1puq
... . . . ...

ψ l
T p1q . . . ψ l

T puq

fi

ffi

fl

. (5.6)

The fine detector stage of Deep-SMX-IM is built by using CNN and FCNN,

respectively. The fine detector’s CNN part convolves the subblock IM block ΨΨΨ
l with

the kernels w f “
“

w f
1 , . . . ,w

f
2T

‰

adds bias c f for f “ 1, ...F and stride 1, and the
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modified received sub-block IM form is obtained as

θ
l
f pγq “ ftanhpℜpψ

l
1pγq ˚w f

1q`ℑpψ
l
1pγqq ˚w f

2 ` . . .`

ℜpψ
l
T pγq ˚w f

2T´1q`ℑpψ
l
T pγqq ˚w f

2T ` c f q

for f “ 1, ...,F and γ “ 1, ...,u. Note that since complex numbers are not supported by

any DL framework yet, real and imaginer parts of the received signals are processed

separately. The CNN part repeats the convolution operation for F different kernel

filters. The output from CNN can be obtained as

ΘΘΘ
l
“

»

—

–

θ l
1p1q θ l

1p2q . . . θ l
1puq

... . . . ...
θ l

Fp1q . . . θ l
Fpuq

fi

ffi

fl

. (5.7)

After that, ΘΘΘ
l is converted into a vector by flattening process and the resulting vector

can be expressed as θ l “ rθ l
1p1q, . . . ,θ

l
1puq, . . . ,θ

l
Fp1q, . . . ,θ

l
Fpuqs

T . The fine detector’s

FCNN part executes θ l with using ta,bu parameters, where a “
“

a1,a2s includes

weight parameters and b “ rb1,b2s contains bias parameters. This part consists of

only two layers, first layer and output layer have τ and PT neurons, respectively. Fine

detector’s output is obtained as

ŝl
“ fsigmoidpa2pftanhpa1θ

l
`b1qq`b2, (5.8)

where fsigmoid, ftanh are activation functions. Finally, SMX-IM Block Combiner

compose the fine detector’s output into transmitted information bits. Before using

the proposed Deep-SMX-IM detector, it has to be trained offline with the data which is

generated at training signal-to-noise ratio (SNR) value by simulations. While training

step uses fixed SNR value, testing step uses a range of SNR values. Deciding training

SNR value has a key role against overfit. The training offline executes on total

trainable parameters, which consists of w f ,c f ,α,β , for the purpose of minimizing

the loss function. It can be expressed as losspsl, ŝlq = }sl ´ ŝl}. In the training stage,

total trainable parameters are randomly initialized at first. Throughout the training,

stochastic gradient descent algorithm executes on these parameters, it can be obtained

as

ε` “ ε´η5 losspsl
B, ŝlBq, (5.9)

where ε , B, η represent total trainable parameters, learning rate and batch size

respectively.
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5.3 Complexity Analysis for SMX-IM

Computational complexity of ZF, ML and DeepSMX-IM detectors is investigated from

the standpoint of number of CMs and given in Table 5.1. Here, ΨJˆI and ΦJˆI are used

for Jˆ I matrices, ψJˆ1 and φJˆ1 stand for Jˆ 1 vectors. Notice that using complex

numbers is not yet supported by any deep learning frameworks and FCNN part of

DeepSMX-IM operates on real numbers thanks to CNN part. Since one complex

multiplication can be carried out with at least three real multiplications, the number

of multiplications belonging to neural networks parts of Deep-SMX-IM are divided to

three in order to refer them as complex multiplications. The summary of the results

is given in Table 5.2. From Table 5.2, it is observed that while ZF and ML detectors

have the lowest and the highest complexity, respectively, Deep-SMX-IM provides an

intermediate solution with regard to computational complexity.

5.4 Numerical Results for SMX-IM

In this section, the performance of Deep-SMX-IM detector has been evaluated for

Rayleigh fading with Extended Pedestrian A (EPA) channel model [38] employing

BPSK and 4-QAM modulation. The raised cosine filter is used as a GFDM prototype

filter with a roll-off factor of 0.5. The following GFDM parameters are assumed

pK “ 32,M “ 3,NCh “ 8q. Note that, it is assumed pK “ 32,M “ 1q for OFDM

parameters. Training data including 12ˆ 105 IM groups, is generated at SNR 15dB

according to GFDM and OFDM parameters. In Table 5.5 and 5.4 Deep-SMX-IM fine

detector model parameters and summary can be seen respectively. In order to find a

global minimum, stochastic gradient based Adam optimizer [37], is used with 8ˆ10´4

learning rate.

Fig. 5.4 and Fig. 5.5 give comparison result between the Deep-SMX-IM for GFDM

and OFDM with ZF coarse detector for 2ˆ 2 and 4ˆ 4, respectively, using BPSK

transmission. As seen from Fig. 5.4, for a 2ˆ2 MIMO configuration, it is observed that

the Deep-SMX-IM for GFDM and OFDM achieves 5.5 dB better BER performance

than ZF coarse detector at a BER value of 10´4 . In Fig. 5.5, for a 4ˆ 4 MIMO

configuration, it is observed that Deep-SMX-IM for GFDM and OFDM achieves
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5.5 and 6 dB better BER performance than ZF coarse detector at BER value 10´4,

respectively.

Fig. 5.6 and Fig. 5.7 display the BER performance of the Deep-SMX-IM for GFDM

and OFDM with ZF coarse detector for 2ˆ 2 and 4ˆ 4, respectively, using 4-QAM

transmissions. From Fig. 5.6, for a 2ˆ 2 MIMO configuration, it is observed that

the Deep-SMX-IM for GFDM and OFDM achieves 5.5 dB better BER performance

than ZF coarse detector at a BER value of 10´4. In Fig. 5.7, for a 4ˆ 4 MIMO

configuration, it is observed that Deep-SMX-IM for GFDM and OFDM achieves 3 dB

better BER performance than ZF coarse detector at BER value 10´4.

As seen from Fig. 5.4 and 5.5, as spectral efficiency and the modulation order

increases, model’s learning capacity decreases. However, Deep-SMX-IM continues

to retain its advantage over the classical linear detector in all conceivable system

parameters. In Table 5.3, the number of CMs required for Fig. 5.4 and 5.5 are provided.

Notice that, while DeepConvIM in [31] has an intermediate solution for GFDM-IM,

Deep-SMX-IM can be assessed as an efficient solution in terms of computational

complexity.

Figure 5.4 : BER Performance of ZF and Deep-SMX-IM with ZF Coarse Detector
for 2ˆ2 (BPSK)
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Figure 5.5 : BER Performance of ZF and Deep-SMX-IM with ZF coarse detector for
4ˆ4 (BPSK)
.

Figure 5.6 : BER Performance ZF and Deep-SMX-IM with ZF Coarse Detector for
2ˆ2 Schemes (4-QAM)
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Figure 5.7 : BER Performance of ZF and Deep-SMX-IM with ZF Coarse Detector
for 4ˆ4 Schemes (4-QAM)
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Table 5.3 : The Total Number of CMs for ZF, ML and Deep-SMX-IM Detectors for
MIMO-GFDM-IM

Configuration ZF Deep-SMX-IM ML
BPSK T “ 2,R“ 2 4.53ˆ108 4.53ˆ108 3.29ˆ1076

4-QAM T “ 2,R“ 2 4.53ˆ108 4.53ˆ108 3.08ˆ10134

BPSK T “ 4,R“ 4 2.31ˆ1011 2.31ˆ1011 1.83ˆ10178

4-QAM, T “ 4,R“ 4 2.31ˆ1011 2.31ˆ1011 1.08ˆ10294

Table 5.4 : Fine Detector Model Summary for SMX-IM

Layer Output Shape Activation Func.
Input (B,2,u,T) None

Conv2d (B,1,u,F) tanh
Flatten (B,uF) None
Dense (B,τ) tanh
Dense (B,pT) sigmoid

Table 5.5 : Fine Detector Model Parameters for SMX-IM

Antenna Configuration Modulation Parameter Value
2ˆ2 BPSK F 64

τ 128
4-QAM F 64

τ 256
4ˆ4 BPSK F 128

τ 256
4-QAM F 128

τ 256
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6. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, GFDM, GFDM-IM, and SMX-IM receiver schemes have been

investigated and deep learning aided novel receiver structures have been introduced

for future wireless networks.

In the first stage of the thesis, a novel DL-aided GFDM detection and demodulation

scheme, which is constructed by a combination of a linear detector and a neural

network, has been proposed. This application would be the first attempt to exploit

a neural network for GFDM detection. Besides, MMSE detector is proposed for the

coarse detection stage of the cascaded approach. Furthermore, a CNN is exploited

to handle complex signals, i.e., QAM signals, through FCNN. BER performance

of the proposed scheme has been compared to classical linear detector. It has

been demonstrated that the proposed scheme provides significant BER improvement

compared to classical linear detectors.

In the second stage of the thesis, a novel deep convolutional neural network-based

detector, termed as DeepConvIM, is proposed for GFDM-IM scheme. The proposed

scheme is constructed by the combination of a ZF detector and a deep convolutional

neural network. This two-stage approach prevents the getting stuck of neural networks

in a saddle point and enables IM blocks processing independently. The FCNN part

uses only two fully-connected layers, which can be adapted to yield a trade-off between

complexity and BER performance. Also, this scheme has a very simple and flexible

neural network structure, which can be adapted to yield a trade-off between complexity

and BER performance. The proposed method would be the first attempt to exploit a

neural network for GFDM-IM detection. Furthermore, a CNN approach is used to

detect IM scheme for the first time. BER performance of the proposed scheme has been

compared to ZF and ML detectors. It has been demonstrated that the proposed scheme

provides significant BER improvement compared to ZF detector with a reasonable

complexity increase.
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In the third stage of the thesis, a DNN-aided detector is proposed for the combined

application of SMX MIMO transmission, GFDM and IM for the purpose of improving

error performance without increasing complexity. To use CNN and FCNN provide

to learn the transmission characteristics of spatial and frequency multiplexing,

respectively. Note that, a CNN approach provides a flexible structure for SMX

transmission thanks to supporting multi-channel operation and preserving the spatial

dependence. Besides, using IM enables to implement subblock-based detection, which

simplifies the DL model and reduces the complexity. The proposed method would be

the first appearance to implement DL-aided SMX-IM detection. It has been shown that

the proposed method has an important BER gain competed with ZF detector without

increasing complexity.

In this thesis, DL aided JDD for GFDM, DeepConvIM for GFDM-IM and

Deep-SMX-IM for MIMO-GFDM-IM have been proposed. All models provide

significant BER performance but while DL aided JDD has the highest complexity,

Deep-SMX-IM has the lowest complexity. The use of index modulation techniques

in DL aided detection methods ensures that DL models are of low complexity.

Furthermore, the combination of SMX and IM ensures that the complexity remains

almost the same compared to the linear detector. The significant advantages of

deep learning architectures should be used according to reflecting the characteristics

physical layer. It has been concluded that deep learning aided data detection methods

are a promising area for the next generation of wireless communication.
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