Mon CHERI @

Mitigating Uninitialized Memory Access with

Conditional Capabilities

Merve Gllmez, Hakan Englund, Jan Tobias Miihlberg, Thomas Nyman

UNIVERSITE
LIBRE
DE BRUXELLES

CHERI-extension for conditional capabilities preventing uninitialized memory accesses

Memory-safe hardware, such as CHERI, is attractive for addressing
memory-safety for code-bases in unsafe languages, e.g., C and C++

. Temporal
« CHERI addresses spatial and temporal safety Safety
« QOther aspects, e.g., initialization safety, is not addressed by CHERI St
Safety
S~ !
I }1-bit T~ ________j
validity tag - - X Address space
/ UB
' _— . .
permissions g object type bounds ,/ Initialization
- ———— > Readable & Writable memory area Safety
baseline architecture address N
|
\ LB
~ S
= X
a T
___ |
LB= Lower Bound UB = Upper Bound OB - Addressed by CHERI - Additionally addressed by Mon CHERI
Each CHERI capability is twice the size of a native pointer and includes memory Use-before-initialized conditions the fourth largest
address plus metadata: permissions, object type, and bounds class of memory-safety vulnerabilities (~10%)
Mon CHERI is a further hardware extension to CHERI capabilities that enables Mon CHERI enables novel policies on memory such as:
memory access control to take previous operations on memory into account e Write-before-Read — memory must be written to at least
— | once before reading — initialization safety
1-bit T~] .
I }Valilditytag Lo X Address space Write-before-Read-Only — const enforced by hardware
/ UB

permissions

2 object type

bounds

opbound

baseline architecture address

Writable memory area

Readable & Writable memory area

LB= Lower Bound UB = Upper Bound OB

OP = Operation Bound

* \Write-before-Execute-Only — emulation of XOM
(eXecute Only Memory) using capabilities

Conditional capabilities enforce conditional permissions
Operation bound tracks area for which condition is fulfilled

* QOperation bound compressed into top 16 bits of address

Source code

Developer

Write-Before-Read

compiler option

Function-level
annotations

Variable-level
annotations

Annotated
source code

q

Linearized CHERI-
> Clang | LLVMIR > LLVM o blod
optimizer LLVM IR
backend
I I I .y .
I [] Store Conditional
Optimization linearization capability

Conditional capability-
enhanced LLVM Compiler

Conditional capability-
enhanced CHERI Processor

Fetch
instruction

New

instructions

Decode

instructions set
passes

extension support

CP
instrumentation

High-level overview of the conditional capability-enhanced LLVM compiler

E
xecute p | Writeback

instruction

J

instruction
A

Decode
conditional

capability
operands

Store with

conditional
capability update

Load with
conditional

capability check

PCC bound Update

check block

Data bound
check block

operation
bounds

Conditional capability-enhanced CHERI processor

Evaluated using MonCHERI-Flute FPGA softcore and QEMU-based

full-system simulation for performance impact and accuracy:

* Coremark performance: 3.5% overhead over CHERI pure-capability mode

» Juliet Test Suite accuracy: 100% detection rate with = 1% false positives

Positive Negative
Bad 560 (100%) 0 (0%)
Good 6 (1%)* 554 (99%)

*) False negative cases exhibit uninitialized behavior, but such behavior
that is benign from a security point of view

	Slide 1

