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CHERI-extension for conditional capabilities preventing uninitialized memory accesses

Memory-safe hardware, such as CHERI, is attractive for addressing
memory-safety for code-bases in unsafe languages, e.g., C and C++
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Each CHERI capability is twice the size of a native pointer and includes memory Use-before-initialized conditions the fourth largest
address plus metadata: permissions, object type, and bounds class of memory-safety vulnerabilities (~10%)
Mon CHERI is a further hardware extension to CHERI capabilities that enables Mon CHERI enables novel policies on memory such as:
memory access control to take previous operations on memory into account e Write-before-Read — memory must be written to at least
— | once before reading — initialization safety
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OP = Operation Bound

* \Write-before-Execute-Only — emulation of XOM
(eXecute Only Memory) using capabilities

Conditional capabilities enforce conditional permissions
Operation bound tracks area for which condition is fulfilled

* QOperation bound compressed into top 16 bits of address
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High-level overview of the conditional capability-enhanced LLVM compiler
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Conditional capability-enhanced CHERI processor

Evaluated using MonCHERI-Flute FPGA softcore and QEMU-based

full-system simulation for performance impact and accuracy:

* Coremark performance: 3.5% overhead over CHERI pure-capability mode

» Juliet Test Suite accuracy: 100% detection rate with = 1% false positives

Positive Negative
Bad 560 (100%) 0 (0%)
Good 6 (1%)* 554 (99%)

*) False negative cases exhibit uninitialized behavior, but such behavior
that is benign from a security point of view
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