
Mon CHÉRI: Mitigating Uninitialized Memory Access with Conditional Capabilities

Merve Gülmez*,†, Håkan Englund*, Jan Tobias Mühlberg‡, Thomas Nyman§
*Ericsson Security Research, †DistriNet, KU Leuven, ‡Université Libre de Bruxelles, §Ericsson Product Security

{merve.gulmez,hakan.englund,thomas.nyman}@ericsson.com, jan.tobias.muehlberg@ulb.be

Abstract—Up to 10% of memory-safety vulnerabilities in
languages like C and C++ stem from uninitialized variables.
This work addresses the prevalence and lack of adequate
software mitigations for uninitialized memory issues, propos-
ing architectural protections in hardware. Capability-based
addressing, such as the University of Cambridge’s CHERI,
mitigates many memory defects, including spatial and temporal
safety violations at an architectural level. CHERI, however,
does not handle undefined behavior from uninitialized variables.
We extend the CHERI capability model to include “conditional
capabilities”, enabling memory-access policies based on prior
operations. This allows enforcement of policies that satisfy
memory-safety objectives such as “no reads to memory without
at least one prior write” (Write-before-Read). We present
our architecture extension, compiler support, and detailed
evaluation of our approach on the QEMU full-system simulator
and a modified FPGA-based CHERI-RISCV softcore. Our
evaluation shows conditional capabilities are practical, with
high detection accuracy while adding a small (≈ 3.5%) overhead
which is comparable to the cost of baseline CHERI capabilities.

1. Introduction

Uninitialized variables, variables that are declared but
not assigned a value, are a well-known source of software
defects in the C-family of programming languages. In general,
all run-time allocated memory in C, C++, and even in
modern languages like Rust, starts out as uninitialized.
In this state, the value of the memory is indeterminate
and may not reflect a valid state for the variable type.
Attempting to interpret uninitialized memory results in
undefined behavior, which can cause security vulnerabilities.
In particular, uninitialized memory may expose residual
data from previously deallocated data structures. This may
inadvertently result in information disclosure, ranging from
leaked pointer values [1] to the exposure of cryptographic
keys [2]. Leaked pointer values can be exploited by attackers
to bypass address space layout randomization (ASLR) [1],
while the use of uninitialized variables can enable arbitrary
code execution attacks [3]. Following recent surveys, use-
before-initialized conditions account for a sizable 10% of
memory-safety vulnerabilities in the wild [4]–[6].

Hardware-assisted defenses against memory-safety is-
sues [7] are motivated by the need to reduce the overhead

of run-time defenses through hardware/software co-designs
and willingness by processor manufacturers to incorporate
mechanisms for software security into their designs [8]–[10].
A prominent example is Capability Hardware Enhanced
RISC Instructions (CHERI) [11], a joint research project of
SRI International and the University of Cambridge. CHERI
extends instruction-set architectures (ISAs) with fine-grained
memory protection and software compartmentalization.

In its default configuration, CHERI provides spatial
safety through capability-based addressing. While this allows
software to preclude many classes of memory-safety defects,
CHERI does not address uninitialized variables. Microsoft
Security Response Center (MSRC) conducted a comprehen-
sive analysis of vulnerabilities reported in 2019 to assess the
CHERI ISAv7 [4]. The findings indicate that only 31% of the
reported vulnerabilities could have been mitigated through
the default configuration of CHERI. An additional 24% could
be mitigated by CHERI when configured to provide partial
temporal safety under the Cornucopia mechanism [12]. The
analysis further highlights that at least 12% of the assessed
vulnerabilities could have been mitigated if CHERI would
protect against uninitialized access. This work explores and
evaluates extensions for CHERI to mitigate those 12%.
This paper and contributions. In this paper, we extend the
CHERI capability model to express memory-access policies
that eliminate undefined behavior associated with uninitial-
ized memory. We introduce conditional permissions (CPs)
to capability-based addressing. CPs can express memory-
access policies that take previous operations on memory
into account. This enables conditional capabilities with fine-
grained policies that satisfy different instances of memory-
safety objectives at different granularities, such as “no reads
of memory which has not been the subject of at least one write”
(Write-before-Read) or “this memory can be written to
only once” (Write-Once). We describe these CPs in §3. CPs
are enforced by introducing the notion of operation-specific
bounds to capability-based addressing:
• We introduce conditional permissions and conditional

capabilities for capability-based addressing (§ 3).
• We integrate conditional capabilities to CHERI-RISC-V

in prototypes based on the QEMU full-system emulator
and an FPGA softcore based on Flute64Cheri IP (§ 4).

• We add support for Write-before-Read conditional
permissions to the CHERI-enabled Clang/LLVM com-
piler (§ 4.3) and embedded memory allocators (§ 4.4).

• We evaluate CPs using > 1000 NIST Juliet test suite

}
➀ 1-bit Validity tag ➁ Permissions ➂ Object type ➃ Bounds

➄ Baseline architecture address

Figure 1: In-memory representation of CHERI capabilities adapted from Watson et al. [13]

test cases for uninitialized variables and using EEMBC
CoreMark performance benchmarks (§ 5).

Our results show that CPs achieve 100% detection with
only six false positives (≈ 1%) for the Juliet test suite,
where the false positives do exhibit uninitialized (but non-
vulnerable) accesses. We further show that CPs on CHERI-
RISC-V impose only ≈ 3.5% performance overhead in
addition to that added by CHERI, compared to benchmarks
on an unmodified RISC-V softcore (7% combined). Con-
sequently, CP overhead is comparable to that of CHERI.
In summary, our work effectively and efficiently addresses
uninitialized memory vulnerabilities, combining very high
detection accuracy with performance penalties that are sub-
stantially lower than other detection mechanisms in hardware
or software. Our conditional capability-enhanced QEMU and
toolchain protototypes, and evaluation artifacts are available
at https://github.com/conditionalcapabilities.

2. Background

How prevalent are uninitialized memory vulnerabilities?
The prevalence of uninitialized memory as a source of
vulnerabilities has been highlighted in statistics based on the
Common Vulnerability Enumeration (CVE) program. MSRC
reports that, between 2017 and 2019, uninitialized memory
vulnerabilities accounted for ≈ 5–10% of the Common
Vulnerability Enumerations (CVEs) issued by Microsoft [4],
[5]. In 2019, uninitialized memory accesses were the fourth
largest class of memory defects (10%), after spatial (44%),
temporal (29%), and type confusion (14%). Similarly, a
more recent survey of memory-safety CVEs between 2015
– 2022 by Sutter [6] indicates that use-before-initialized
conditions account for ≈ 9% of all reported memory-safety
vulnerabilities, after lifetime safety (49%), bounds safety
(18%), and type confusion (11%), indicating that uninitialized
memory accesses remain an issue in industrial code bases
that impacts system security.

2.1. Capability-Based Addressing

Capability-based addressing is a memory access-control
paradigm originating from mainframe computers of the
late 1950s and 60s [14]. In capability-based addressing,
conventional references to locations in computer memory,
i.e. pointers, are replaced by protected objects called capa-
bilities [15]. Capabilities carry, in addition to the referenced
memory address, additional permission information that is
used by the processor or memory-management subsystem to
determine whether the accesses performed through a capabil-
ity are allowed. While the exact composition of a capability

can vary between different hardware instantiations, virtually
all capability-based addressing schemes express allowed
operations through at least Read (R), Write (W), and Execute
(X) permissions that control whether references through a
capability are permitted for load and store instructions or
instruction fetches respectively. Capabilities also include
bounds information that limit the range of memory that can
be referenced via a particular capability.

Interest in capability-based addressing diminished with
the introduction of memory management units (MMUs) that,
in addition to performing address translation between virtual
and physical memory addresses, also manage access control
to virtual memory. However, capabilities differ fundamentally
from the access control in MMUs: whereas MMUs associate
permissions to individual memory pages, capabilities asso-
ciate permissions to the references used to address memory.

2.2. The CHERI Capability Architecture

CHERI, which stands for Capability Hardware Enhanced
RISC Instructions, is an ISA extension for a capability-
based architectural protection model and hardware-software
co-design. The CHERI architecture extends an underlying
conventional ISA with hardware-supported capabilities that
are used to protect virtual addresses used as code or data
pointers. The CHERI ISA specification [16] defines the
representation of capabilities held in registers and memory,
as well as capability-aware instructions to manipulate them.
Currently, implementations of CHERI exist for MIPS, RISC-
V, and Armv8-A instruction sets. CHERI-enabled processors
have been developed by Arm [17], Microsoft [18], as well
as in the RISC-V ecosystem.

Figure 1 shows the in-memory representation of a CHERI
capability. Each capability is double the width of the native
integer pointer type of the baseline architecture: 128 bits
on 64-bit platforms and 64 bits on 32-bit platforms. One
additional bit, the validity tag ➀, is stored separate from the
capability and is protects its integrity: any manipulation of the
capability in-memory by non-capability-aware instructions
invalidates its tag. Capability-aware instructions maintain the
tag as long as certain architectural invariants are met. This
prevents direct in-memory manipulations and injection of
arbitrary data as capabilities. The permissions ➁ control how
the capability can be used and consists of the permissions
described in § 2.1. The object type ➂ allows capabilities
to be temporarily “sealed”, which renders the capability
unusable until it is “unsealed” by a special instruction.
Sealing is used by CHERI to implement opaque pointer
types and fine-grained in-process isolation. The bounds ➃
describe a lower and upper bound relative to the baseline

https://github.com/conditionalcapabilities

architecture address ➄, which limits the portion of address
space the capability is able to access. To reduce the in-
memory footprint of capabilities, the bounds are stored in a
compressed format [19] with both bounds in 28 bits (for a
64-bit address), loosing precision as the object size increases.

New capabilities in the CHERI architecture are always
derived from an existing capability. The heritage of all
capabilities can thus be traced back to the initial capabilities
made available to firmware at boot time. CHERI enforces
monotonicity on newly created capabilities, ensuring that
capabilities constructed by a capability-aware instruction
cannot possess permissions or bounds that exceed those
of the original capability. The only exceptions to capabil-
ity monotonicity are facilities for exception handling and
compartmentalization using sealed capabilities, which allow
non-monotonicity in a controlled manner to enable software
to gain access to additional data capabilities.

The bounds information stored together with the virtual
address forms the basis for the memory-safety properties
provided by CHERI. Each allocation made by a program
running on a CHERI-capable processor is associated with
a capability that describes, in addition to the address, the
valid bounds of the object (or sub-object) in memory. This
allows CHERI to provide inherent spatial memory-safety
properties. Extensions to the CHERI software stack have
explored adding temporal-safety properties to heap-based
allocations [12], [20], [21] and sandboxing [22].

CHERI does not enforce type safety for capabilities, nor
does it prevent software from accessing uninitialized memory
using a capability it possesses. Consequently, CHERI must
be complemented with compiler-based type-safety analysis,
and instrumentation passes that zero local variables before
first use [5], [23] as well as heap allocators returning zeroed
memory. Security analyses of CHERI (e.g., by MSRC [4])
generally take such mitigations for granted.

3. Conditional Capability Design

Consider the uninitialized pointer-dereference vulnera-
bility in the Linux kernel shown in Listing 1. This vul-
nerability allows control-flow hijacking due to the unini-
tialized backlog pointer ❶ being dereferenced at ❹ when
cpg->eng_st != ENGINE_IDLE ❷. An attacker could ex-
ploit this vulnerability to achieve arbitrary code execution by
spraying the stack to take control of the value of backlog
and make it point to attacker-controlled code [3].

Our goal is to detect the first use of the uninitialized
pointer in the if-clause at ❸. Unlike methods that automat-
ically zero out memory [5], [23], conditional permissions
(CPs) offer the same protection against uninitialized memory
use but with smaller and more predictable run-time overhead.

3.1. Challenges

Integrating CPs into capability-based addressing presents
several challenges. A key issue is managing the tracking
of uninitialized data. Previous approaches [25]–[27] assume
that data between the lower bound and address pointed to

1 static int queue_manag(void *data){
2 cpg->eng_st = ENGINE_IDLE;
3 do {
4 struct crypto_async_request *async_req = NULL;
5 ❶ struct crypto_async_request *backlog;
6

/* ... cpg->eng_state may change state here ... */
7 ❷ if (cpg->eng_st == ENGINE_IDLE) {
8 backlog = crypto_get_backlog(&cpg->queue);
9 /* ... */

10 }
11
12 ❸ if (backlog) {
13 ❹ backlog->complete(backlog, -EINPROGRESS);
14 }
15 /* ... */
16 } while (!kthread_should_stop());
17 return 0;
18 }

Listing 1: Excerpt from Linux’ queue_manag() function
defined in drivers/crypto/mv_cesa.c showing an
uninitialized pointer dereference patched in April 2015 [24].

1 /* Example function -level annotation */
2 __attribute__(("writebeforeread"))
3 void function_with_potentially_uninitialized_variables() {
4 /* ... */
5 }
6
7 /* Example variable -level annotation */
8 void function_with_potentially_uninitialized_variables() {
9 int __writebeforeread uninitialized_variable;

10 /* ... */
11 }

Listing 2: Function- and variable- level annotations exposing
Write-before-Read conditional capabilities to developers.

by the capability is initialized, while uninitialized data falls
between the address and the upper bound. However, this
approach has limitations, as discussed in § 6. To address this,
we propose operation-specific bounds (OBs), which precisely
track writes. OBs must be updated when a program writes
to a region of memory to reflect the new bounds. Otherwise,
stale or misaligned bounds can lead to false positives.
Storing and updating operation bounds. To store and
update OBs efficiently, we propose leveraging unused bits in
the baseline architecture address (Figure 1). This minimizes
changes to the underlying hardware but makes significant
compression of the OB necessary. Further details on the
hardware modifications are provided in § 3.3 and § 4.
Integration with existing architectures. To be practical,
CPs must integrate seamlessly with existing capability archi-
tectures, such as CHERI, that are gaining industry adoption.
As a case study, we integrate CPs to CHERI while ensuring
full compatibility with the underlying RISC-V ISA. In §4, we
describe the integration process and our hardware extension,
“Mon CHÉRI”, which introduces only minor modifications
to the CHERI capability representation (§ 4.2).
Maintaining capability monotonicity. CPs add, similar
to capability sealing (§ 2.2), controlled non-monotonicity
to the CHERI design. They allow temporary suspension of
permissions, which are regained once the associated condition
is met. Our design (§ 3.2) guarantees that CPs do not to
elevate privileges beyond the original capabilities.
Maintaining capability linearity. Capability linearity refers
to the consistency and integrity of OBs across a program’s

Address space

Writable memory area

UB

LB
OB

(a) Initial state of memory area.

Address space

Writable memory area

Writable & Readable memory area
LB

UB

OB

(b) State after store between LB and OB

Address space

Writable & Readable memory area

LB

UB
OB

(c) Final state when OB reaches UB.

Figure 2: Write-before-Read conditional capability state transitions: (a) newly allocated memory under the Write-
before-Read CP is write-only between the lower bound (LB) and upper bound (UB) and becomes gradually readable
(b) after store operations advance the operation bound (OB). In the final state (c), the OB has reached the UB and the
conditional capability behaves identical to a corresponding conventional capability.

TABLE 1: Conditional permissions types for conditional capabilities

Conditional permissions Description

Write-before-Read Memory must be written to at least once before read-access is granted
Write-before-Execute Memory must be written to at least once before execute access is granted
Write-before-Read-Only Memory must be written to exactly once before read access is granted
Write-before-Execute-Only Memory must be written to exactly once before execute access is granted
Write-Once Memory can be written to exactly once
Read-Once Memory can be read exactly once
Execute-Once Memory can be executed exactly once

execution. To maintain this, we propose a new compiler
pass to ensure that capabilities are properly updated as the
program executes. This pass is implemented in the LLVM-
based Mon CHÉRI toolchain, as detailed in § 3.3 and § 4.3.
Minimizing run-time overhead. A concern with any mem-
ory access control mechanism is the potential for performance
degradation. For Mon CHÉRI, we ensure that checks involved
in monitoring memory accesses do not add significant latency
or computational overhead during normal program execution.
In §4.1, we explain how the OB checks are carefully designed
to minimize additional cycles per instruction.

3.2. Conditional Capabilities

Conditional capabilities are designed to complement
the conventional capability permissions with conditional
permissions, allowing permissions to be tailored to specific
needs or requirements for different sections of data or
operations. The conventional capability permissions and CPs,
when enabled for a capability, are evaluated in parallel;
both sets of permissions need to be valid for memory
access to be allowed. Conditional capabilities consist of
two building blocks: 1) Conditional permissions enable
capabilities to trace whether the corresponding condition
is fulfilled. 2) operation-specific bounds enable CPs to
be enforced at a granularity that allows the differentiation
between accessible and inaccessible memory ranges within
the conventional bounds of the capability.
Conditional permissions. To describe conditional permis-
sions, we denote conventional permissions that remain

unchanged throughout the lifetime of a capability, as PU ,
operations on memory as X, and CPs as PC. A PC is granted
on the condition that X occurs: X =⇒ PC (if X, then PC). If
X does not occur, PC is not granted. On an architectural level,
operations (X) are limited to load, store and execute, while
permissions (PU and PC) can be read, write and execute. For
simplicity, we will use the terms Write, Read, and Execute
when referring to both X and PC in CP names. The effective
permissions (P) are a subset of the conventional and the
conditional permissions:

P =

PU i f PC = ∅
PU ∧

(
X =⇒ PC

)
i f PC , ∅

Operation-specific bounds. Tracking the memory range for
which PC : X =⇒ PC requires operation-specific bounds.
Each operation bound (OB) tracks the subset of memory
within a capability’s conventional bounds for which X has
occurred. To accommodate multiple CPs at the same time,
X =⇒ PC and Y =⇒ QC where X , Y requires two
distinct OBs. Conversely, for X =⇒ PC and X =⇒ QC,
where PC , QC, one OB is sufficient.

Figure 2 illustrates an example use case for our condi-
tional capabilities: Write-before-Read. In its initial state
(Figure 2.a), the capability refers to a writable memory area
with upper and lower bounds. If a store occurs in the memory
area (Figure 2.b), the OB increases by the size of the store
operand on the hardware level.

An advantage of our design is that it allows capabil-
ity hardware to enforce a variety of novel access-control

Conditional capability-
enhanced LLVM Compiler

LLVM IRClang LLVM
optimizer

PassesOptimization
passes

Linearized
LLVM IR

CHERI-
enabled
backend

CP
instrumentation

1

Store
linearization

2 Conditional
capability instructions
set extension support

3

Developer

Annotated
source code

Source code

Variable-level
annotationsCFunction-level

annotationsBA
Write-Before-Read

compiler option

(a) Overview of the conditional capability-enhanced LLVM compiler. Circled letters indicate the different usage models for conditional
capabilities: A Write-before-Read compiler option, B function-level annotations, and C variable-level annotations. Components
with a darker background and circled numbers indicate additions compared to the conventional CHERI-enhanced LLVM compiler.

Conditional capability-
enhanced CHERI Processor Fetch

instruction
Decode

instruction
Execute

instruction Writeback

Update
operation
bounds

8Load with
conditional

capability check

7Store with
conditional

capability update

6Decode
conditional

capability operands

5
New

instructions

4
PCC bound
check block

9
Data bound
check block

10

(b) conditional capability-enhanced CHERI processor. Components with a darker background circled numbers indicate additions compared
to the conventional CHERI processor.

Figure 3: High-level system architecture of the conditional capability-enhanced LLVM compiler and CHERI processor.

permissions beyond conventional RWX. We identify the CPs
and corresponding use cases in Table 1. This set of CPs
allows the definition of “single-use” code and data that
enable policies that can be used to harden software against
run-time attacks that aim to reuse existing program resource.
Such attacks, e.g., code-reuse attacks such as return-oriented-
programming [28], can use pre-existing sequences of instruc-
tions to craft malicious control flows that can be used to
compromise program behavior. Code that a process executes
only once, e.g., a fixed sequence of initialization instructions,
could, using the Execute-Once CP be invoked once during
program initialization and is subsequently rendered useless
for code-reuse attacks later in the process’ lifetime.
Write-before-Execute is useful for just-in-time (JIT)

compilers that reuse memory buffers for generated code,
making them targets for control-flow hijacking attacks using
executable heap or stack buffers. Write-before-Execute-
Only enables conditional capabilities to emulate eXecute-
Only-Memory (XOM), typically limited to firmware, to
protect secrets such as stack canary reference values or
values used for control-flow enforcement [29] from being
read by attackers.

3.3. High-Level System Architecture

Figure 3 depicts the high-level system architecture for our
prototype conditional capability-enhanced LLVM compiler
and CHERI processor. Inputs and process blocks in a darker
color indicate the changes to a conventional CHERI-enabled
compiler and processor architecture. For conciseness, in this
description, we focus on Write-before-Read CPs.

In our prototype, conditional capabilities are exposed to
developers through the three alternative usage models: A

a Write-before-Read compiler option, B function-level
annotations, and C variable-level annotations. Our current
design of the compiler option A applies Write-before-
Read to all stack variables, but we discuss possibilities for
more intelligent heuristics in §7. Function- and variable-level
annotations are implemented as Clang function and variable
attributes, respectively (shown in Listing 2), which gives
developers control over which variables Write-before-
Read is applied to.

The conditional capability-enhanced LLVM compiler
(Figure 3a) can operate either on original source code or
source code annotated by the developer using the afore-
mentioned attributes. This differs from the conventional
CHERI-enabled LLVM in three ways: ➀ the CP instrumen-
tation transform pass that marks variable for instrumentation
based on the compiler option or developer annotations, and
emits intrinsics that interface with the conditional capability
hardware to initialize operation-specific bounds for newly
created capabilities, ➁ a store linearization transform pass
that ensures that accesses to uninitialized objects in memory
are performed consistently through a capability that tracks
the operation bound, and ➂ support for the new conditional
capability instructions in the CHERI RISC-V back end,
allowing the compiler to interface with the conditional
capability-enhanced CHERI processor.

The conditional capability-enhanced CHERI processor
(Figure 3a) is modified to support the conditional capa-
bility instructions (➃, § 4.1), and its instruction pipeline
is augmented with logic to encode and decode capabili-
ties containing an additional operation bound (➄, § 3.2).
Modified ➅ store and ➆ load logic updates and checks the
operation bounds when executing store and load instructions,

respectively. Finally, ➇ the pipeline performs writebacks of
updated capabilities in register operands after the operations
that update the operation bounds. Code capability checks for
the Program Counter Capability (PCC) are done in a ded-
icated bounds check block ➈ (needed for Write-before-
Execute, Write-before-Execute-Only, and Execute-
Once), while all data CPs use a general-purpose bounds
check block ➉.

4. Mon CHÉRI Implementation

In this section, we present Mon CHÉRI, our imple-
mentation of CPs for the CHERI-RISC-V architecture. We
implemented two versions of Mon CHÉRI: 1) a Mon CHÉRI
software model for the QEMU-system-CHERI128 full-
system emulator, and 2) a Mon CHÉRI softcore based on
the CHERI-Flute64 processor intellectual property (IP). The
Mon CHÉRI ISA extension is described in § 4.1.

In addition, we extended the existing CHERI-LLVM
toolchain [30] with support for the Mon CHÉRI ISA ex-
tension and Write-before-Read CP instrumentation for
stack-allocated variables (§ 4.3). Finally, we added run-time
Write-before-Read CP support for heap-allocated memory
in the CheriFreeRTOS [31] and Two-Level Segregated Fit
(TLSF) [32] memory allocators (§ 4.4).

4.1. Mon CHÉRI Extension for CHERI-RISC-V

CSetOpBounds instructions. The RISC-V ISA is extensible
through portions of the instruction encoding space reserved
for ISA extensions. We add a family of CSetOpBounds
instructions to CHERI-RISC-V to the existing CHERIv9 [16]
non-standard Xcheri extension in the custom-2/rv128 opcode
space to allow setting an initial, or updating an already set,
value for a capability’s operation bound. Our CSetOpBounds
instructions require two operands: an existing capability and
a length operand. When invoked, CSetOpBounds sets the
operation bound to the range [b, o] where b is the “base”
encoded as part of the conventional capability bound, and
o is the “operation top” encoded into the operation bound
(see § 4.2). CSetOpBounds does not allow programs to
increase the operation bounds, while they are allowed to
invoke CSetOpBounds to decrease the operation bounds of
a capability. The operational bounds set by CSetOpBounds
are restricted to be within the original capability bounds.

Additionally, CSetOpBounds must identify the CPs
which operation bound to set. Lacking free operands in
the instruction encodings available in Xcheri, we chose to
encode the CP information into the CSetOpBounds opcode.
The CSetOpBounds instruction variants are shown in Table 2.
Conditional permissions. We assign new conditional permis-
sions control bits from the CHERI capability representation
(pop in Figure 4b). The CHERI-Flute64 IP reserves 12-bits
for hardware-defined permissions, i.e., those authorizing load,
store, etc., and 4-bits for software-defined permissions, which
interpretation are left open by the CHERIv9 specification.
For the purposes of prototyping CPs, we utilize the four

available software-defined bits, treating them as a 4-bit
integer that enumerates one of 16 possible, mutually exclusive
permission states. Five of those states correspond to the CPs
in table 2, ten modes are left unused, and one mode, the
zero value, corresponds to the default state in which CP
enforcement is disabled. In this default state, protections such
as Write-before-Read are inactive, allowing uninitialized
memory access within the capability’s bounds. Invoking
csetwbropbound on a capability enables Write-before-
Read enforcement for that capability.
Processor pipeline changes. To avoid increasing processor
latency, bounds checks are carefully structured within the
execute instruction block of the pipeline (see Figure 3b),
which has two stages. In the first stage, where single-cycle
arithmetic logic unit (ALU) operations are performed, the
CHERI implementation checks the conditional permissions
and initiates the data capability bounds check, while the
actual bounds check occurs in the second stage (used for
longer-latency operations like memory access). OB checks
run in parallel with the general-purpose bounds checking to
minimize their latency. For stores and loads, the first stage
checks if the conditional permission allows the operation,
and if the target address results in an update of the current
operation bound; if it does and is adjacent, the second stage
extends the bound to cover it, with the update committed in
the writeback stage. Table 2 shows how the OB checks and
writeback are used by different CPs. Any violation raises a
CHERI protection exception in the second stage.
Avoiding data hazards. Conditional Capabilities create
dependencies between instructions that are typically inde-
pendent. This is because stores using conditional capabilities
update the OB in the capability operand, while stores on
conventional capabilities do not. As a result, when a store
using a conditional capability is immediately followed by
a load or another store using the same capability, a data
hazard occurs: the latter operation requires the updated OB
at the ALU stage for the OB check but is not available in
the operand register until the writeback stage completes.

To solve this, we implemented a bypass—a new data
path within the pipeline—that forwards the updated OB
from the memory access or writeback stage to the ALU
stage. This bypass activates when the processor detects that
the next instruction in the pipeline operates on the same
conditional capability. This avoids the need to stall the
processor or reorder instructions during compilation and
is compatible with conventional RISC-V instruction ordering.
Appendix § A.1 shows an example of a data hazard that is
avoided by the bypass.

4.2. Adding Operation Bounds to Capabilities

The CHERI ISA introduced capability compression in
ISAv6 [33], with the current CHERI Concentrate [19]
compression scheme introduced in ISAv7 [34]. Compression
reduces the in-memory size of capabilities, which would
otherwise occupy 256 bits, quadrupling the space needed
for native 64-bit pointers, and increasing cache footprint and
memory bandwidth requirements. Expanding capabilities

TABLE 2: Architectural changes to CHERI-RISC-V by conditional permission. The CSetOpBounds variants column shows
the corresponding CSetOpBounds instruction mnemonic for each CP. The Pipeline changes column shows the impact on
the Load, Store, and Execute logic inside the processor. A # indicates the operation is unaffected, a G# indicates the operation
is augmented with an OB check, a H# indicates the operation is augmented with a writeback that, under certain conditions,
updates the conditional capability OB. Finally, a indicates the operation is augmented with both.

Conditional
Permission

CSetOpBounds
variants

Pipeline changes
Load Store Execute

Write-before-Read csetwbrbound G# H# #
Write-before-Execute csetwbxbound # H# G#
Write-before-Read-Only csetrobound G# #
Write-before-Execute-Only csetxobound # G#
Write-Once csetwtbound # #
Read-Once csetrtbound H# #
Execute-Once csetxtbound # #

023131416172526274445464748596063

psw phw f otype IE T [11 : 3] TE B [13 : 3] BE

a
}

Cursor

(a) 128-bit CHERI Capability with CHERI Concentrate compression (adapted from [16])
023131416172526274445464748596063

pop phw f otype IE T [11 : 3] TE B [13 : 3] BE

O [13 : 3] OE a
}

Cursor

(b) 128-bit CHERI Capability with compressed operation bound

Figure 4: Layouts of 128-bit CHERI Capabilities without (a) and with (b) compressed operation bound. The labels indicate
the fields for software-defined and hardware-defined permissions (psw and phw respectively), CP control bits (pop), flag (f),
object type (otype), internal exponent (IE), compressed top (T) including high part of exponent (TE), compressed base
(B) including low part of exponent (BE), and cursor consisting of the pointer address (a) in a, the address and compressed
operation bound (O, OE) in b.

further to include additional operation bounds is impractical.
However, most modern 64-bit operating systems (OSs) use
only part of the 64-bit virtual address space. For instance,
RISC-V Linux uses 48-bit addresses [35], and 32-bit OSs
like FreeRTOS use 32 bits even on 64-bit hardware. We
leverage these unused bits to store an additional 16-bit OB.

Conditional capability masking. Masking a portion of
the address in cases where OSs do not fully utilize 64-bit
addresses has precedents in both conventional processors,
such as in Arm’s Top Byte Ignore (TBI) [36], Intel Linear
Address Masking (LAM) [37], and AMD Upper Address
Ignore (UAI) [38] features, as well in the CHERI design as
alternative compression formats described in Appendix E
of the CHERI ISAv9 [16]. To encode operation bounds,
Mon CHÉRI applies an address mask when a register holds
a conditional capability. Since CHERI-RISC-V uses a merged
register file, general-purpose registers can hold either a 64-
bit integer or a 128-bit capability. Unlike prior RISC-V
pointer masking proposals [39], Mon CHÉRI’s address mask
is limited to conditional capabilities, leaving conventional
CHERI capabilities and regular pointers unchanged.

CHERI compressed capability representation. A raw 256-
bit capability is comprised of three virtual addresses: base

(b), top (t), and address (a). The 128-bit representation
of capabilities utilizes the redundancy between the three
addresses and stronger alignment requirements (proportional
to object size) for a more compact representation.

Figure 4a shows the capability format for CHERI Con-
centrate. B and T encode the b and t bounds in one of two
formats depending on the internal exponent (IE) bit: if IE = 1
then an exponent (E) is stored in the lower three bits of B
and T (BE and TE) reducing their precision by three bits.
E determines the position at which B and T are inserted
into a to obtain b and t. Otherwise (IE = 0, E = 0) the full
width of b and t are used. Their width is determined by an
encoding parameter: mantissa width (MW) that determines
the precision of the decoded bounds. The CHERI ISAv9
uses MW = 14 for 128-bit capabilities. However, t is further
compressed by two bits as the top two bits of t can be derived
from the equation T = B + L where the most significant bit
of L (Lmsb) is known from the values of IE and E and a carry
bit is implied if T [11 : 0] < B [11 : 0] since t is known to
be larger than b.

When decoding the bounds, b and t are derived from a
by substituting MW bits, E to E + MW, with B and T and
clearing the bottom E bits. To allow a to span a larger region

1 define dso_local void @function_with_potentially_uninitialized_variables() local_unnamed_addr addrspace(200) #11 !dbg
!322 {

2 entry:
3 %uninitialized_variable = alloca i32, align 4, addrspace(200), !clang.decl.ptr !325, !clang.var.writebeforeread !100
4 ❶ %0 = call ptr addrspace(200) @llvm.cheri.bounded.stack.cap.i64(ptr addrspace(200) %uninitialized_variable , i64 4)
5 ❷ %1 = call ptr addrspace(200) @llvm.cheri.cap.op.bounds.set.i64(ptr addrspace(200) %0, i64 0)
6 /* ... */
7 }

Listing 3: LLVM intermediate representation (IR) of Listing 2 after CP LLVM Pass Instrumentation

while maintaining the original bounds, the most significant
bits of t and b atop = a [63 : E + MW] can be adjusted up or
down using corrections ct and cb. The detailed description
of the CHERI Concentrate compression can be found in
Section 3.5.4 of the CHERI ISAv9 specification [16].
Mon CHÉRI compressed capability representation. Fig-
ure 4b shows the capability format for Mon CHÉRI. We
encode the operation bound, operation top (o) in two fields
in the most significant 16-bits of the cursor: O [13 : 3]
(11 bits) and OE (5 bits) which are freed by limiting
atop = a [47 : E + MW]. When IE = 0, o is stored identically
to b with its lowest three bits O [2 : 0] derived from the
most significant bits of OE (OE [4 : 2]). When IE = 1, up
to five bits from OE [E + 2 : 0] are used to store the least
significant bits of o. Our current implementation limits OE
to five bits, limiting o to an IE of at most 2. We discuss
methods to alleviate this limitation in § 7. Expanding o to
full 48 bits happens similarly to b with its own correction co.
Figure 6 in § A.2 illustrates the changes relative to CHERI
Concentrate compression.

4.3. Mon CHÉRI Support for CHERI-LLVM

CP instrumentation. Listing 3 shows an excerpt of the
LLVM IR of one of the functions in Listing 2 after CP
instrumentation (see ➀ in Figure 3). The CHERI-LLVM
compiler adds capability bounds to stack variables in an
IR-level compiler pass, CheriBoundAllocas. This pass
replaces every IR stack allocation instruction (alloca, ❶
in Listing 3) with a llvm .cheri .cap .bounds .set
intrinsic. These are then replaced with CHERI csetbounds
instructions by the CHERI-RISC-V backend. We extended
this pass to add llvm .cheri .cap .op .bounds .set
intrinsics (❷ inListing 3)for variables that are either anno-
tated with __writebeforeread (C in fig. 3a), in functions
annotated with __attribute__(("writebeforeread"))
(B), or all stack variables, when compiling with the -cheri-
write-before-read option (A). The llvm .cheri .cap
.op .bounds .set intrinsic is replaced with csetwbr-
bound instructions by the backend.
Optimizing Write-before-Read. The CheriBoundAllo-
cas pass checks if alloca instructions fall within the
original capability bounds and omits llvm .cheri .cap
.bounds .set in those cases. We disable this optimiza-
tion for variables that receive llvm .cheri .cap .op .
bounds .set since it does not guarantee stores to Write-
before-Read variables fall within the OBs. However, not all
variables require run-time CP checks. For Write-before-

Read, we optimize arrays and scalar variables allocated
in function entry blocks by using a simple, non-heuristic
analysis that checks if they are fully initialized before being
accessed. The analysis inspects each store in the function’s
first basic block and verifies whether they are preceded by
loads to the same allocation. For arrays, we track initialization
with a vector, checking store instructions for the base pointer
or specific indices, ensuring each load is preceded by a
store through dominance analysis [40]; if a load occurs
before a store, the index is marked uninitialized in the
vector. For scalars, we verify whether a store targets the
variable, and each load is dominated by a corresponding
store. Variables shown to be initialized do not receive the
Write-before-Read CP and, therefore, can be checked
by CheriBoundAllocas for capability-bound optimization.
In § 7, we discuss the possibility of using heuristic static
analysis to optimize Write-before-Read variables further.
Store linearization. LLVM IR uses static single-assignment
(SSA) form, where each variable has exactly one assignment.
The compiler creates new IR variables to maintain this rule
when a variable has multiple assignments. If a variable
is accessed through different control-flow paths, a phi (Φ)
function is introduced to merge the values from these paths.

During register allocation, the compiler maps variables
to processor registers. However, due to register pressure—
the number of live variables exceeding the number of
available registers—–the compiler generates spill code that
moves variable contents between memory and registers. Live-
range splitting optimizes when variables are spilled and can
make use of the fact that the same variable may, at times,
be available in multiple registers simultaneously. However,
when a conditional capability is stored in multiple registers,
the state of its operation bound may become inconsistent
across instances. This can occur due to: 1) register spilling,
or 2) register forking, where the conditional capability
state differs between registers. Inconsistencies arise when a
duplicated capability is stored in memory, becomes stale as
its copy’s operation bound is updated, and is later restored.

To address this, we introduce a store linearization pass,
which runs after SSA optimizations and ensures a single,
canonical conditional capability instance is maintained across
stores. Performing store linearization after optimizations
guarantees robustness across optimization levels.

Store linearization inserts placeholder function calls for
every store operand in the IR to prevent live-range splitting
from spilling a canonical conditional capability, causing
it to grow stale. This placeholder is an identity function—
effectively a no-op—taking a conditional capability operand

1 #include <cheriintrin.h>
2
3 void *ptr malloc (size_t size) {
4 /*Dynamic Memory Memory management */
5 ➀ cheri_bounds_set(ptr, size);
6 ➁ cheri_opbounds_set(ptr, 0, WriteBeforeRead);
7 return ptr;
8 }

Listing 4: Example of CP-enhanced version of malloc().

and returning it unchanged. This, however, creates a data
dependency between the input and output operand, signaling
to the live-range splitting algorithm that the conditional
capability has changed since its use in the store.

Array indexing via the LLVM IR GetElementPtr (GEP)
instruction requires special handling. GEP takes a pointer
and an offset, returning a new pointer (in SSA-form) pointing
at the specified offset in the array. Store linearization inserts
a placeholder function for the GEP operand, not the indexing
pointer. In practice, the CHERI-RISC-V backend generates
code using integer-relative store instructions (s[bhwd]),
where the GEP input is used as a capability operand with
an offset. Therefore, the linearization targets the original
operand to extend its liveness.

Finally, the pass recursively replaces any variables hold-
ing conditional capabilities used store operands with those
returned by the corresponding placeholder functions.
Escape value analysis. When a value in SSA form escapes a
code block, it must be updated when accessed along different
control-flow paths. The reg2mem transformation [41] in
LLVM handles escaped values by: 1) allocating stack memory
for each escaped SSA register, 2) storing SSA values in this
memory before exiting a block, and 3) reloading values upon
entering a new block. This ensures consistency across code
paths. Store linearization modifies reg2mem to update condi-
tional capabilities across control-flow paths, similar to how
phi functions merge SSA values. One optimization available
to store linearization stems from the original reg2mem also
tracking output operands from the GEP instruction as escaped
values. The special handling of array indexing allows us to
avoid storing output operands from GEP in memory.

Similarly, conditional capabilities stored explicitly in
memory must be updated after being used for store operations,
even in straight-line code. Store linearization recursively
checks if the operand used in a store is itself stored in
memory. If so, an additional store operation is inserted to
update the capability stored in memory. Listings 7 and 8 in
§ A.3 illustrate this transformation.

4.4. Mon CHÉRI Support for Memory Allocators

We implemented the cheri_opbounds_set() appli-
cation programming interface (API) to provide low-level
support for conditional capabilities in system software,
such as memory allocators. To enable Write-before-Read
CPs for heap allocations, the allocator must initialize the
capabilities to allocate memory with the appropriate CP.

Listing 4 shows how we modified the CheriFreeRTOS
memory allocator, and the TLSF allocator [32], previously

TABLE 3: Detection rate of Mon CHÉRI on uninitialized
memory issues from Juliet Test Suite [43] CWE457 test cases.
Green cells indicate the true positives and true negatives,
while red cells indicate the false positives and false negatives.

Ground truth Mon CHÉRI
Positive Negative

Bad 560 0
100% 0%

Good 6∗ 554
1% 99%

∗Following the “Good” and “Bad” classification in Juliet, Mon CHÉRI
reports six false-positives. Yet, these cases do exhibit uninitialized
memory access behavior (cf. § 5.1).

ported to CHERI [42] to enforce Write-before-Read on
allocation made by malloc(). A CHERI-aware malloc()
already uses the cheri_bounds_set() intrinsic to set
bounds of the return pointer, ptr, based on the allocation
size. To make it conditional capability-aware, we added
a call to cheri_opbounds_set(ptr, 0, WriteBefor-
eRead) before returning from malloc(). This explicitly
sets the operation bounds of ptr to zero and configures
the CP control bits to indicate ptr should be treated as
Write-before-Read by the hardware.

5. Evaluation

We evaluated the Mon CHÉRI prototypes for functional-
ity, security, performance, and area cost. The functional and
security evaluation (§ 5.1) was performed on a conditional
capability-enhanced QEMU-system-CHERI128 full-system
emulator, CheriFreeRTOS [31], which integrates CHERI-
based compartmentalization, and a Write-before-Read
memory allocator (§ 4.4). For performance and area cost, we
extended the CHERI-RISC-V field-programmable gate array
(FPGA) softcore [44] based on the open-source Bluespec [45]
RISC-V processor IP with the CP ISA extension (§4.1). This
processor family includes Piccolo, Flute, and Tooba IP cores.
Although sharing significant portions of Bluespec System
Verilog (BSV) code, our performance evaluation uses the
64-bit CHERI-RISC-V Flute (RV64ACDFIMSUxCHERI).
This prototype, MonCHÉRI-Flute64, was validated against
RISC-V specifications using 229 RISC-V ISA tests [46].

5.1. Functional and Security Evaluation on QEMU

We used the U.S. National Institute of Standards and
Technology (NIST) Juliet Test Suite [43], which includes
thousands C/C++ of test cases that demonstrate common
programming defects that lead to memory vulnerabilities,
to evaluate Mon CHÉRI. These tests are organized by
CVE numbers, with “bad” versions exhibiting vulnerabilities
and “good” versions showing patched code. We focused
on the CWE-457 [47] (Use of Uninitialized Variable) C
test cases, covering 560 bad and 560 corresponding good
cases. These examples cover a range of realistic scenarios,
such as conditional control flows where variables might

TABLE 4: Area cost on VCU118 @ 100MHz expressed in number of lookup tables (LUTs) and number of registers.

LUTs registers
logic ∆ memory ∆ registers ∆

CHERI-Flute64 139109 – 10649 – 134427 –
MonCHÉRI-Flute64 142069 2960 2% 10705 56 0.5% 135114 687 0.5%

TABLE 5: Performance cost on VCU118 @ 100MHz expressed as CoreMark test results. The CoreMark score for a processor
is reported as CoreMark-iterations-per-second-per-core-MHz. The ∆ is relative to CHERI-Flute64 nocap results.

CoreMark
Binary size ∆ Total ticks ∆ Total time (sec) ∆ Iterations/sec ∆ Score

CHERI-Flute64
(baseline) nocap 43728 – 2704279286 – 27 – 370 – 3.7

purecap 49872 6144 14.05% 2878393823 174114537 6.43% 28 1 3.57% 357 13 3, 51% 3.57

MonCHÉRI-Flute64
nocap 43728 – 2704301802 22516 0.42% 27 0 0% 370 0 0% 3.7

purecap 49872 6144 14.05% 2878516285 174236999 6.44% 28 1 3.57% 357 13 3.51% 3.57
❶ Write-before-Read + purecap 50224 6496 14.85% 2949321554 245019752 9.06% 29 2 7.04% 344 26 7.00% 3.44

Write-before-Read + purecap
❷ excluding store linearization 49232 5504 12.59% 2882957831 178678545 6.61% 28 1 3.57% 357 13 3.51% 3.57

remain uninitialized in certain branches (e.g., as illustrated
in Listing 1), function calls that pass variables assumed to
be initialized, and cases involving complex data types like
arrays, pointers, and structures.

To extensively assess Mon CHERI’s detection rate for
uninitialized variable accesses, we made specific modi-
fications to the Juliet test suite. Modern compilers like
LLVM tend to optimize away uninitialized memory accesses
or reject them outright due to their sophisticated static
analysis capabilities. To prevent this behavior, we declared all
variables as volatile, which stops the compiler from applying
optimizations based on undefined behavior. This allows us
to build the tests with optimization level -O2 while ensuring
all test bad cases trigger uninitialized memory accesses.

The tests were executed within CheriFreeRTOS, which
uses an instrumented allocation API to track memory ac-
cesses. CheriFreeRTOS provides a “compartmentalize and
return” mode that isolates each test case in a separate
compartment, allowing test cases resulting in a CHERI
protection fault to return control to the caller, which records
the result and proceeds to the next test case. The test cases
were compiled with the Mon CHÉRI-enhanced CHERI-
LLVM at optimization level -O2 and with Write-before-
Read instrumentation and store linearization but without the
Write-before-Read optimization described in § 4.3.

The results in Table 3 show that Mon CHÉRI detects
all “bad” cases (100% true-positive rate) and reports only
six false positives (1% false-positive rate). Upon closer
inspection, these false positives stem from cases where
uninitialized variables are copied, but never used. Although
these cases are technically valid violations of the Write-
before-Read policy, they do not pose a security risk, as
data is immediately overwritten. Analysis tools relying on
taint propagation [48] might not flag these cases, as the
uninitialized memory does not propagate. As Mon CHÉRI
enforces policies at an architectural level, distinguishing

between these benign cases and actual vulnerabilities is not
currently possible. All six false positives share this pattern,
where the uninitialized memory is copied but later overwritten
before being used. We provide the source code for one of
these cases in § A.3, Listing 6. Further, all six cases have
straightforward software workarounds that can be applied,
once detected, to initialize variables early with a default zero
value to avoid uninitialized access.

We evaluated the effectiveness of the store linearization
pass by comparing the detection rate for the Juliet tests
instrumented with and without store linearization. Without
store linearization 119 out of 560 “good” test cases exhibit
false positives (21% false positive rate). This demonstrates
store linearization provides a significant improvement to
the detection accuracy of Mon CHÉRI. We also verified
the Write-before-Read optimization did not affect the
detection accuracy as it only omits CP instrumentation for
variables that are statically verified to be fully initialized.

For comparison, we compiled the Juliet test suite with all
relevant warnings enabled in GCC and Clang/LLVM. GCC
detected 170 out of 560 uninitialized cases (30%) at -O0 and
173 cases (31%) at -O2. Clang/LLVM detected 117 cases
(21%) regardless of optimization level. Detection rates for the
Valgrind and Dr. Memory dynamic analysis tools range from
below 10% to levels comparable to Mon CHÉRI, depending
on the Juliet and compiler configurations. Under the same
configuration used for Mon CHÉRI, (volatile variables and
Clang with -O2), Valgrind and Dr. Memory detected 400
cases (71%) and 388 cases (69%), respectively.

As the Juliet CWE457 tests do not exhibit patterns that
would require Write-before-Execute, Write-before-
Read-Only, Write-before-Execute-Only, or Write-
Once CPs we verified the functionality of these CPs in the
conditional capability-enhanced QEMU-system-CHERI128
implementation using purpose-built synthetic test cases.

5.2. Performance and Area Evaluation on FPGA

Area cost. We synthesized MonCHÉRI-Flute64 at 100 MHz
on an AMD Virtex UltraScale+ VCU-118 FPGA. Compared
to the CHERI-Flute64 design, the area cost of MonCHÉRI-
Flute64 increased by only 2%, a small cost considering the
overhead of adding CHERI. The majority of this additional
logic is shared across many CPs.
Performance cost. We integrated the MonCHÉRI-Flute64
softcore into the BESSPIN-GFE security evaluation plat-
form [49], which allows for a full-system evaluation of
Mon CHÉRI performance. The GFE system includes the
MonCHÉRI-Flute64 softcore, a BootROM, Soft Reset and
JTAG, UART, Ethernet/DMA, DDR4, and Flash controllers.
A host-based gdb debugger connects to the system over the
USB/JTAG connector, and a host-based console connects over
USB/UART. We measured performance using the EEMBC
CoreMark [50] benchmark, running bare-metal on the GFE.
Although MonCHÉRI-Flute64 supports all CPs in Table 2
we focus in these experiments on Write-before-Read as
it is applicable to all variables in CoreMark. Consequently,
applying it to all variables in the CoreMark benchmark code
provides a worst-case estimate of Mon CHÉRI’s performance
impact. As we expect other CPs to only be applied to a subset
of variables, their impact is a fraction of Write-before-
Read’s.

Table 5 compares the performance results MonCHÉRI-
Flute64 to the CHERI-Flute64 across different configura-
tions: no capability enforcement (no-cap), pure-capability
mode (purecap), and Write-before-Read enabled in pure-
capability mode (Write-before-Read + purecap ❶). The
results show that the Write-before-Read extension adds
a modest ≈ 3.5% overhead over pure-capability mode,
with minimal impact on baseline performance (≈ 0.4%)
when capability enforcement is disabled. The combined
performance impact of Write-before-Read and CHERI
pure-capability mode over the baseline performance with no
capability enforcement is 7%.

We also compared the performance of MonCHÉRI-
Flute64 with and without store linearization (❷). Although
store linearization is necessary, as explained § 5.1, for the
correctness of Write-before-Read enforcement, disabling
the hardware fault for this experiment allows us to compare
the performance impact of the hardware changes with that of
the store linearization program transformation. Enabling store
linearization resulted in most of the performance degradation
observed in earlier tests (≈ 3.5%), with the hardware changes
contributing negligible additional overhead (≈ 0.2%). This
suggests that performance can be improved further by
optimizing the store linearization strategy.
Microbenchmarks. To assess the impact of our store and
load pipeline changes we microbenchmark stores and loads
between CHERI-Flute64 in purecap mode and MonCHÉRI-
Flute64 in Write-before-Execute + purecap mode. The
store microbenchmark writes a 256-element array, recording
total ticks. The load microbenchmark, we measured read
from an of equal size. Here we report the difference in
mean times for the experiment over 10 repetitions. We

Figure 5: TLSF allocator microbenchmark. Bars show over-
head relative to TLSF in MonCHÉRI-Flute64 nocap mode.

observed a negligible difference between CHERI-Flute64
and MonCHÉRI-Flute64: ≈ 5 ticks for the load and ≈ 30
ticks for the store benchmark.

Finally, we evaluated the impact of Mon CHÉRI on the
TLSF allocator through microbenchmarks that allocate and
free 1 MB of memory in chunks ranging from 32 bytes
to 4 KiB. The results, shown in Figure 5, indicate that the
Write-before-Read-enhanced TLSF allocator introduces
negligible performance overhead: ≈ 0.1% compared to
purecap and ≈ 1.5% (g.m.) compared to no-cap. The overhead
of Write-before-Read + purecap is constant regardless
of allocation size, while the overhead of zero-initialization
increases linearly with allocation size.

6. Related Work

Various techniques for detecting the use of uninitialized
variables are routinely used in modern software development.
We categorize the existing approaches into six categories, as
shown in Table 6. In this section, we compare conditional
capabilities and Mon CHÉRI to existing approaches.
Static analysis. Static analysis evaluates a program’s code
without executing it. By analyzing the code’s structure and
syntax, compilers, and dedicated static analysis tools can
detect potential errors, security issues, and coding standard
violations. Static analysis is performed early in development,
allowing developers to address problems proactively.

Most major C/C++ compilers, including GCC [51], Clang
[52], Intel Data Parallel C++ (DPC++), and Microsoft Visual
C++ (MSVC) support compile-time checks for uninitialized
variables. Static analysis tools such as Adlint [63], Clang-
Check [64], Clang-Tidy [65], CodeSonar [66], Coverity
Scan [67], CppCheck [68], Flawfinder [69], Frama-C [70],
IKOS [71], Infer [72], and LCLint/Splint [73] can also check
for uninitialized variables in C/C++ code. These tools,
particularly commercial tools focused on secure software
development, are commonly referred to and marketed as
static application security testing (SAST).

TABLE 6: Related work

Support for
stack allocations

Support for
heap allocations

Usable with
dynamic analysis

Unaffected by
optimization level

Performance
overhead

Memory
overhead

Static code analysis1

–Wuninitialized (GCC [51] ✓ ✓ ✓ ✗ – –
–Wmaybe-uninitialized (GCC [51]) ✓ ✓ ✓ ✗ – –
–Wuninitialized (Clang [52]) ✓ ✓ ✓ ✓ – –
–Wsometimes-uninitialized (Clang [52]) ✓ ✓ ✓ ✓ – –

Dynamic analysis
Valgrind Memcheck [53] ✓ ✓ ✓ ✗ 20× yes
Dr. Memory [54] ✓ ✓ ✓ ✗ 10× yes

Sanitizers
Memory Sanitizer [55] ✓ ✓ ✓ ✓ 2×–4× yes

Redundant execution
DieHard [56] ✓ ✓ ✓ ✓ ≈ 40% yes
Differential Replay [57] ✓ ✓ ? ✓ 22×–24× yes

Automatic initialization
Secure deallocation [58] ✓ ✓ ✓ ✓ <7% –
UniSan [59] ✓ ✓ ✗ ✓ ≈ 5% –
SafeInit [23] ✓ ✓ ✗ ✓ ≈ 5% –
STACKLEAK [60] *2 ✗ ✗ ✓ ≈ 1% – 5% –
initAll (MSVC) [5] ✓ ✗ ✗ ✓ ≈ 10% –
-ftrivial-auto-var-init (GCC [51], Clang) ✓ ✗ ✗ ✓ ≈ 1% [61] – 35% [62] –

Hardware-based detection
Uninitialized capabilities [25] *4 ✗ ✓ ✓ ? *3

Capstone [27] *4 ? ✓ ✓ ≈ 50%5 *3

Mon CHÉRI ✓ ✓ ✓ ✓ ≈ 3.5% / 7%6 *3

1 For conciseness, we include only compiler-based static analyzers focusing on uninitialized variable detection in Table 6. 2 STACKLEAK protects the Linux kernel call stack after system calls.
3 Memory overhead due to replacement of pointers with CHERI / Capstone capabilities. 5 Overhead reported for the Capstone isolation model by Yu et al. [27].
4 Uninitialized capabilities and Capstone protect stack frames at coarser granularity than what uninitialized variable detection for individual variables requires.
6 Overhead for Mon CHÉRI given both excluding overhead for CHERI (purecap) and including overhead for CHERI, based on Table 5.

However, all static analysis is limited by Rice’s Theo-
rem [74], which states that analyzing non-trivial properties
of program behavior is undecidable for Turing-complete
languages. This implies that static detection of uninitialized
variables is equivalent to solving the halting problem. As a
result, static methods are approximations, balancing verbosity
with false positives and analysis time.

Dynamic analysis. Dynamic analysis examines program
behavior during execution. Unlike static analysis, which
analyzes code without running it, dynamic analysis monitors
run-time characteristics such as performance, memory usage,
and interaction with system resources. It can, therefore,
identify bugs, security vulnerabilities, and performance
bottlenecks that may not be evident through static analysis.
Tools like Valgrind Memcheck [53] and Dr. Memory [54] use
dynamic instrumentation frameworks (e.g, DynamoRIO [75])
to track memory accesses and detect use of uninitialized
variables. These frameworks act as process virtual machines,
interposing and transforming original program instructions
before they get executed by the hardware. This enables
dynamic analysis to freely transform the target program and
add extra instrumentation around program instructions to
keep track of memory accesses

Dynamic analysis, however, incurs significant perfor-
mance overhead, often degrading program speed by 10× to
20×, making it impractical for continuous use. These tools
also struggle to accurately identify the origin of uninitial-
ized memory. For example, Memcheck traces uninitialized
variables to heap blocks or stack allocations that occur in a

particular function, but may not always pinpoint the exact
source. Dr. Memory, meanwhile, does not detect uninitialized
variables smaller than a machine word.
Sanitizers. Sanitizers are compiler-based tools designed to
detect memory-safety, concurrency, and undefined behavior
issues in C and C++ programs. They intercept memory
accesses via compile-time instrumentation, offering higher
efficiency and accuracy than dynamic analysis tools. Sanitiz-
ers like MemorySanitizer [55] detect uninitialized stack- and
heap-allocated memory at individual bit granularity, with
less overhead (2× to 4× slowdown) compared to Valgrind’s
one-order-of-magnitude slower dynamic analysis [76].

However, like Valgrind Memcheck, MemorySanitizer
only reports uninitialized values that affect control flow,
which limits its effectiveness in identifying memory issues
related to information disclosure to, e.g., uninitialized data
that overlaps with previously allocated pointers and which
can reveal information to bypass ASLR.
Redundant execution techniques. Redundant execution
techniques, such as DieHard [56], enhance memory safety
by using randomized memory allocation and replication.
DieHard scatters memory allocations across a large heap,
reducing the chances of uninitialized memory being adjacent
to other active regions. By comparing execution across
multiple program replicas, DieHard can detect discrepancies
caused by uninitialized memory reads. Similarly, differential
replay [57] captures execution traces and replays them with
varied initial memory states. These techniques assume
that correctly initialized variables will produce consistent

outputs across runs, while uninitialized variables will lead
to variations due to differences in their initial memory state.
By identifying discrepancies between execution instances,
DieHard and differential replay can pinpoint instances where
uninitialized variables are affecting the program’s behavior.

Multi-variant execution [77]–[82] generalizes this con-
cept, running multiple functional equivalent, but indepen-
dently developed, programs in parallel. This principle has
been applied to safety-critical software in various domains,
such as train switching and flight control systems, electronic
voting, and specialized software testing, such as detecting
zero-day exploits and kernel information leaks [83]. However,
replicating compute instances and I/O across each variant is
resource-intensive and impractical for general-purpose use.
Automatic initialization. Automatic initialization ap-
proaches, such as UniSan [59] and SafeInit [23], automat-
ically set variables to default values, mitigating uninitial-
ized memory issues. These methods introduce performance
overhead, particularly with large allocations [62], and may
miss issues with non-stack variables. For example, Microsoft
MSVC’s initAll [5] and the -ftrivial-auto-var-init
option in GCC and Clang focus on stack variables, but their
their use is limited by their performance penalties [5], [61].

Automatic initialization can also interfere with dynamic
analysis tools and sanitizers, masking issues with uninitial-
ized variables that could be detected and fixed, making it less
suitable for debugging and software testing [84]. Chow et
al. [58] propose a secure deallocation technique to zero mem-
ory upon function exit, though it shares similar drawbacks,
introducing overhead at the end of object lifetimes. The Linux
Kernel implements a similar scheme, STACKLEAK [60],
that clears the kernel stack at the end of system calls. This
mitigates the impact of information leakage bugs, although
it can impact system performance by up to 5%.
Hardware-based detection. Hardware-based detection meth-
ods, such as Georges et al.’s uninitialized capabilities [25]
and Capstone [27], attempt to address uninitialized memory
issues by simply introducing a new permission to CHERI.
Unlike Mon CHÉRI, which uses an operation-specific bound
to track written portions of the address space, uninitialized
capabilities grant read permissions in the range [a, t] and
write permission in [b, t] where a is the baseline address, b
is the capability bound base, and t is the capability bound
top. However, this approach has significant limitations.

Firstly, the use of uninitialized capabilities requires
software to derive new capability, with an adjusted a, with
each write operation, introducing complexity in managing
memory permissions. This limits the utility of uninitialized
capabilities to a secure calling convention that enhances local
stack frame encapsulation, first proposed by Skorstengaard
et al. [85], by additionally protecting against uninitialized
stack reads.

Secondly, uninitialized capabilities only support Write-
before-Read semantics, meaning they do not provide
protection against other forms of uninitialized memory access.
This limited expressibility reduces the utility of the approach,
particularly when compared to more flexible solutions like
Mon CHÉRI, which supports a broader range of access

control policies as well as protection for both stack, heap,
and other types of memory allocations.

Capstone [27] is a redesign of the CHERI capability
model that enables broader memory isolation and attempts
to generalize uninitialized capabilities. It addresses the first
drawback of Georges et al.’s method by introducing self-
incrementing write semantics. However, like Georges et al.’s
uninitialized capabilities, Capstone shares the limitation of
only addressing Write-before-Read scenarios. Capstone
also suffers from a major drawback of its own: it incurs a
significant performance overhead of up to 50%.

Additionally, in Capstone, fully initialized capabilities
must be explicitly promoted to regular capabilities. Either
the developer or compiler must understand when a capability
is expected to be fully initialized, in order to promote it. In
contrast, due to the way conditional capability semantics are
designed (§ 3.2), a fully initialized conditional capability is
equivalent to the corresponding CHERI capability.

These prior hardware-based approaches also face in-
tegration challenges. Uninitialized capabilities have only
been simulated on the obsolete CHERI-MIPS ISA [26].
Capstone, on the other hand, comes with invasive changes
to the established CHERI architecture and high overhead,
making it impractical for real-world applications, especially
in performance-critical systems.

Comparison with Mon CHÉRI. Our evaluation demon-
strates that CPs, particularly Write-before-Read capabil-
ities in Mon CHÉRI, offer high detection accuracy with
minimal false positives when used in isolation. While static
analysis is valuable for early detection, tools like dynamic
analysis, sanitizers, and CPs require runtime errors to be
exercised. We believe that Write-before-Read CPs can
complement static analysis by improving the detection of
uninitialized memory issues. In § 7, we discuss how static
analysis can be used with CP instrumentation to further
optimize CP performance.

Our assessment of Mon CHÉRI is based on exten-
sive evaluation using standard public sector and industry
benchmarks on prototypes based on the QEMU full-system
emulator and the MonCHÉRI-Flute64 softcore (§ 5). To our
knowledge, no practical implementation nor compiler support
for Georges et al.’s uninitialized capabilities is available
to enable a fair comparison with Mon CHÉRI on FPGA.
We argue that conditional capabilities, carefully designed
to impose only minimal changes to the CHERI capability
representation (§ 4.2), have a better chance of real-world
adoption than more invasive proposals, such as Capstone.

Hardware-enforced CPs can improve detection perfor-
mance for uninitialized memory issues similar to how mem-
ory tagging [9] has enhanced memory-safety sanitizers [86].
Moreover, CPs offer an alternative to automatic initialization
(see § 7), emulating it without the associated drawbacks.
Lastly, CPs enable novel memory access control policies,
such as Write-before-Execute-Only, which provide sim-
ilar benefits to memory with special-purpose features.

7. Discussion and Future Work

Here, we discuss limitations of the current Mon CHÉRI
prototype, alternate designs, and suggest future research.
Leveraging compiler-based static analysis. In § 4.3 we
showed how Write-before-Read CPs can be omitted
for variables that are statically verified to be initialized.
Existing compiler heuristics could be used to further optimize
Write-before-Read, e.g., by omitting Write-before-
Read CPs when a variable is determined initialized by GCC’s
-Wuninitialized, or instrument only variables identified
as potentially uninitialized in certain code paths by GCC’s -
Wmaybe-uninitialized. We leave further optimizations
as future work as Clang/LLVM, which our conditional
capability-enhanced compiler prototype is based on, does not
currently replicate GCC’s -Wmaybe-uninitialized heuris-
tic. Clang’s alternative -Wsometimes-uninitialized is
more conservative as it only issues warnings when the
conditions under which a variable is left uninitialized are
known. Developers can already correct such cases based on
the emitted warnings. We believe the Write-before-Read
CPs are useful in complementing compiler-based analysis,
covering cases where the analysis is inconclusive.
Inter-function store linearization. The store linearization
pass (§ 4.3) is currently limited to intra-function analysis,
such as when Write-before-Read conditional capabilities
are used within functions or passed to callees. However,
currently propagating conditional capabilities from a callee
back to the caller must be done explicitly to avoid the
conditions explained in § 4.3 to occur across function bound-
aries. Solving inter-function store linearization is simpler in
languages that enforce borrowing, where only one mutable
reference to an allocation can exist at a time. Borrowing is
prominent in Rust [87], but similar, compiler-enforced borrow
checking has been proposed for C [88] and C++ [89]–[91]
as well. Future work should explore borrow-checker-aided
full program conditional capability linearization.
Emulating automatic initialization. In § 6, we suggest
Write-before-Read CPs could emulate automatic initial-
ization, avoiding its drawbacks. Instead of issuing a hardware
protection fault, a load to an address outside the conditional
capability’s OB could set the destination register to zero
(or a default pattern). This mimics automatic initialization
without the overhead of pre-initializing memory.

Another drawback of automatic initialization, discussed
in § 6, is interference with dynamic analysis and sanitizers.
Initialization emulation could be controlled via a hardware
configuration, allowing it to be toggled on or off. This allows
the same CP-instrumented program binary to be used in
production and for testing, depending on the configuration.
Overlapping capability permission bits. In §4.1 we explain
how Mon CHÉRI reuses software-defined permission bits in
the CHERI capability format. A drawback of the enumerator-
based pop representation is that it makes CPs, and possible
software-defined permissions, mutually exclusive.

To avoid this drawback, we considered an alternative
based on that CPs always describe a subset of the con-
ventional CHERI permissions, e.g., Write-before-Read

confers the same access as R when o = t. In this alter-
native, a conditional control bit, c is assigned from the
reserved, but unused, capability bits to indicate whether the
capability is in conditional mode. In conditional mode, i.e.,
when c = 1, the phw bits R, W, and X represent the cor-
responding CPs: Write-before-Read, Write-Once, and
Write-before-Read respectively. This allows CP bits to
overlay conventional CHERI permissions bits without losing
expressivity. The Write-before-Read-Only, and Write-
before-Execute-Only CPs could be overlayed similarly
with an additional exclusive permission bit.
Non-sequentially written memory. In § 4.1, we assume that
memory accessible via CPs is written sequentially. This holds
for most data types and operations like memcpy() and mem-
set(), but not for C structures that are initialized field-by-
field or contain uninitialized padding. Software workarounds
like #pragma pack with ordered field-initialization or an
initial memset() before individual fields are set can prevent
false positives from field-by-field access.

Alternatively, conditional capabilities can treat the o
value as a bitmap, where each bit describes the initialization
state of a memory segment. Memory can be segmented
into equal chunks or structured data fields. If the 16-bit
o field is insufficient, it could point to a larger bitmap in
shadow memory, similar to how MemorySanitizer [55] tracks
initialized memory. However, we believe the existence of
straightforward software workarounds makes the overhead
of complex tracking solutions unnecessary and thus leave
exploring solutions for tracking non-sequentially initialized
memory outside the scope of this work.
Supporting IE > 2. In § 4.2, we explain that the current
operation bounds encoding restricts conditional capabilities
to IE ≤ 2. Similar to how the CHERI Concentrate encoding
sacrifices alignment precision as allocation sizes increase, the
operation top (o) can sacrifice write precision as IE increases.
At an architectural level, this is achieved by zero-padding the
least significant bits of OE , akin to handling B and T . When
the precision of the least significant stored bit in OE exceeds
the ability to express writes to individual bytes, halfwords,
or words, corresponding store instructions (s[bhw]) are dis-
abled for that conditional capability. Extending writes beyond
doubleword precision requires a variant of SetOpBounds,
which extends o under the condition that the two preceding
instructions have been writes reaching a target granularity.

8. Conclusion

This paper presents Mon CHÉRI, a novel extension to
the CHERI architecture that addresses uninitialized memory
errors that account for ≈ 10% of all memory vulnerabilities.

By introducing conditional capabilities, Mon CHÉRI en-
ables precise run-time detection of uninitialized memory ac-
cess at instruction-level, with minimal performance overhead.
Our extensive evaluation on the Mon CHÉRI QEMU-system-
CHERI128 emulator and FPGA-based MonCHÉRI-Flute64
prototype shows that Mon CHÉRI achieves a 100% true-
positive rate while maintaining a low, 1%, false-positive rate

on the Juliet test suite, and incurs only a ≈ 3.5% performance
overhead for the Write-before-Read extension.

Our comparison with state-of-the-art solutions, including
static analysis tools, sanitizers, and other hardware-based
detection techniques demonstrates that Mon CHÉRI com-
plements static analysis and provides additional coverage
where static analysis alone falls short. Moreover, conditional
permissions (CPs) enable novel memory access control
policies, while being carefully designed to impose only
minimal changes to the CHERI capability representation
and thus have a better chance of real-world adoption than
previous proposals that provide only Write-before-Read
semantics, with significant limitations or invasive changes.

Looking ahead, we plan to extend Mon CHÉRI ca-
pabilities by integrating it with broader real-world use
cases, emulation of automatic initialization, explore further
optimization strategies, and reducing false positives in edge
cases though compiler improvements.

Acknowledgments

Firstly, we would like to extend our gratitude to Prof. N.
Asokan and Hossam ElAtali at the University of Waterloo
for allowing us to conduct part of our evaluation on the
group’s FPGA equipment.

We are equally grateful for the guidance provided by
the University of Cambridge Computer Laboratory Secu-
rity Group members, particularly Dr. Hesham Almatary,
Dr. Jonathan Woodruff, Jessica Clarke, and Prof. Robert
Watson. We also wish to thank our colleagues at Ericsson:
Christoph Baumann, Patrik Ekdahl, Peter Svensson, and
Santeri Paavolainen for supporting various aspects of our
research. Lastly, we appreciate the valuable discussions we’ve
had with regards to this work with Hans Liljestrand, Adriaan
Jacobs, and Fatih Aşağıdağ.

This work has received funding under EU H2020 MSCA-
ITN action 5GhOSTS, grant agreement no. 814035, by
the Research Fund KU Leuven, by the Flemish Research
Programme Cybersecurity, and by the CyberExcellence
programme of the Walloon Region, Belgium.

References

[1] H. Cho et al., “Exploiting Uses of Uninitialized Stack Variables in
Linux Kernels to Leak Kernel Pointers,” in 14th USENIX Workshop
on Offensive Technologies (WOOT 20), ser. WOOT ’20. USENIX
Association, Aug. 2020.

[2] N. Sullivan, “The Results of the CloudFlare Challenge,” Nov. 2014,
(accessed 2024-07-05). [Online]. Available: https://blog.cloudflare.
com/the-results-of-the-cloudflare-challenge

[3] K. Lu et al., “Unleashing Use-Before-Initialization Vulnerabilities
in the Linux Kernel Using Targeted Stack Spraying,” in
Proceedings 2017 Network and Distributed System Security
Symposium. San Diego, CA: Internet Society, 2017. [Online].
Available: https://www.ndss-symposium.org/ndss2017/ndss-2017-
programme/unleashing-use-initialization-vulnerabilities-linux-
kernel-using-targeted-stack-spraying/

[4] N. Joly, S. ElSherei, and S. Amar, “Security Analysis of CHERI
ISA,” Microsoft Security Response Center, Tech. Rep., Oct. 2020.
[Online]. Available: https://msrc.microsoft.com/blog/2020/10/security-
analysis-of-cheri-isa/

[5] J. Bialek, “Solving Uninitialized Stack Memory on Windows | MSRC
Blog | Microsoft Security Response Center,” Mar. 2020, (accessed
2024-06-27). [Online]. Available: https://msrc.microsoft.com/blog/
2020/05/solving-uninitialized-stack-memory-on-windows/

[6] H. Sutter, “C++ safety, in context,” Mar. 2024, (accessed 2024-03-
14). [Online]. Available: https://herbsutter.com/2024/03/11/safety-in-
context/

[7] L. Zhao et al., “A Survey of Hardware Improvements to Secure
Program Execution,” ACM Comput. Surv., p. 35, Jun. 2024. [Online].
Available: https://doi.org/10.1145/3672392

[8] Qualcomm, “Pointer Authentication on ARMv8.3: Design and
Analysis of the New Software Security Instructions,” Whitepaper, Jan.
2017. [Online]. Available: https://www.qualcomm.com/content/dam/
qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf

[9] Arm, “Armv8.5-A Memory Tagging Extension,” Whitepaper,
Aug. 2019. [Online]. Available: https://developer.arm.com/-
/media/Arm%20Developer%20Community/PDF/Arm_Memory_
Tagging_Extension_Whitepaper.pdf

[10] Intel, “A Technical Look at Intel’s Control-flow Enforcement
Technology,” Jun. 2020, (accessed 2023-10-28). [Online]. Avail-
able: https://www.intel.com/content/www/us/en/developer/articles/
technical/technical-look-control-flow-enforcement-technology.html

[11] J. Woodruff et al., “The CHERI capability model: Revisiting RISC in
an age of risk,” in 2014 ACM/IEEE 41st International Symposium
on Computer Architecture (ISCA), Jun. 2014, pp. 457–468. [Online].
Available: https://ieeexplore.ieee.org/document/6853201

[12] N. Wesley Filardo et al., “Cornucopia: Temporal Safety for
CHERI Heaps,” in 2020 IEEE Symposium on Security and
Privacy (SP), May 2020, pp. 608–625. [Online]. Available:
https://ieeexplore.ieee.org/document/9152640

[13] R. N. M. Watson et al., “An Introduction to CHERI,” Computer
Laboratory, University of Cambridge, Technical Report UCAM-CL-
TR-941, Sep. 2019. [Online]. Available: https://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-941.pdf

[14] H. M. Levy, Capability-Based Computer Systems. USA: Butterworth-
Heinemann, 1984. [Online]. Available: https://homes.cs.washington.
edu/~levy/capabook/

[15] J. B. Dennis and E. C. Van Horn, “Programming semantics for
multiprogrammed computations,” Communications of the ACM,
vol. 9, no. 3, pp. 143–155, Mar. 1966. [Online]. Available:
https://dl.acm.org/doi/10.1145/365230.365252

[16] R. N. M. Watson et al., “Capability Hardware Enhanced
RISC Instructions: CHERI Instruction-Set Architecture (Version
9),” Computer Laboratory, University of Cambridge, Technical
Report UCAM-CL-TR-987, Sep. 2023. [Online]. Available: https:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-987.html

[17] R. Grisenthwaite, “Arm Morello Evaluation Platform -Validating
CHERI-based Security in a High-performance System,” in 2022 IEEE
Hot Chips 34 Symposium (HCS), Aug. 2022, pp. 1–22. [Online].
Available: https://ieeexplore.ieee.org/document/9895591

[18] S. Amar et al., “CHERIoT: Complete Memory Safety for Embedded
Devices,” in 56th Annual IEEE/ACM International Symposium on
Microarchitecture. Toronto ON Canada: ACM, Oct. 2023, pp.
641–653. [Online]. Available: https://dl.acm.org/doi/10.1145/3613424.
3614266

[19] J. Woodruff et al., “CHERI Concentrate: Practical Compressed
Capabilities,” IEEE Transactions on Computers, vol. 68, no. 10, pp.
1455–1469, Oct. 2019. [Online]. Available: https://ieeexplore.ieee.org/
document/8703061

[20] H. Xia et al., “CHERIvoke: Characterising Pointer Revocation
using CHERI Capabilities for Temporal Memory Safety,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’52. New York, NY, USA:
Association for Computing Machinery, Oct. 2019, pp. 545–557.
[Online]. Available: https://dl.acm.org/doi/10.1145/3352460.3358288

https://blog.cloudflare.com/the-results-of-the-cloudflare-challenge
https://blog.cloudflare.com/the-results-of-the-cloudflare-challenge
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/unleashing-use-initialization-vulnerabilities-linux-kernel-using-targeted-stack-spraying/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/unleashing-use-initialization-vulnerabilities-linux-kernel-using-targeted-stack-spraying/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/unleashing-use-initialization-vulnerabilities-linux-kernel-using-targeted-stack-spraying/
https://msrc.microsoft.com/blog/2020/10/security-analysis-of-cheri-isa/
https://msrc.microsoft.com/blog/2020/10/security-analysis-of-cheri-isa/
https://msrc.microsoft.com/blog/2020/05/solving-uninitialized-stack-memory-on-windows/
https://msrc.microsoft.com/blog/2020/05/solving-uninitialized-stack-memory-on-windows/
https://herbsutter.com/2024/03/11/safety-in-context/
https://herbsutter.com/2024/03/11/safety-in-context/
https://doi.org/10.1145/3672392
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://ieeexplore.ieee.org/document/6853201
https://ieeexplore.ieee.org/document/9152640
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://homes.cs.washington.edu/~levy/capabook/
https://homes.cs.washington.edu/~levy/capabook/
https://dl.acm.org/doi/10.1145/365230.365252
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-987.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-987.html
https://ieeexplore.ieee.org/document/9895591
https://dl.acm.org/doi/10.1145/3613424.3614266
https://dl.acm.org/doi/10.1145/3613424.3614266
https://ieeexplore.ieee.org/document/8703061
https://ieeexplore.ieee.org/document/8703061
https://dl.acm.org/doi/10.1145/3352460.3358288

[21] N. W. Filardo et al., “Cornucopia Reloaded: Load Barriers
for CHERI Heap Temporal Safety,” in Proceedings of the
29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2. La
Jolla CA USA: ACM, Apr. 2024, pp. 251–268. [Online]. Available:
https://dl.acm.org/doi/10.1145/3620665.3640416

[22] D. Chisnall et al., “CHERI JNI: Sinking the Java Security Model into
the C,” in Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’17. New York, NY, USA: Association for
Computing Machinery, Apr. 2017, pp. 569–583. [Online]. Available:
https://dl.acm.org/doi/10.1145/3037697.3037725

[23] A. Milburn, H. Bos, and C. Giuffrida, “SafeInit: Comprehensive
and Practical Mitigation of Uninitialized Read Vulnerabilities,”
in Proceedings 2017 Network and Distributed System
Security Symposium. San Diego, CA: Internet Society, 2017.
[Online]. Available: https://www.ndss-symposium.org/ndss2017/ndss-
2017-programme/safelnit-comprehensive-and-practical-mitigation-
uninitialized-read-vulnerabilities/

[24] C. I. King, “Crypto: Mv_cesa - ensure backlog
is initialised · torvalds/linux@1a92b2b · GitHub,” Apr.
2015. [Online]. Available: https://github.com/torvalds/linux/commit/
1a92b2ba339221a4afee43adf125fcc9a41353f7

[25] A. L. Georges et al., “Efficient and provable local capability
revocation using uninitialized capabilities,” Proceedings of the ACM
on Programming Languages, vol. 5, no. POPL, pp. 6:1–6:30, Jan.
2021. [Online]. Available: https://dl.acm.org/doi/10.1145/3434287

[26] S. Huyghebaert et al., “Uninitialized Capabilities,” Jun. 2020.
[Online]. Available: http://arxiv.org/abs/2006.01608

[27] J. Z. Yu et al., “Capstone: A Capability-based Foundation for Trustless
Secure Memory Access,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 787–804. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity23/presentation/yu-jason

[28] H. Shacham, “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86),” in Proceedings
of the 14th ACM Conference on Computer and Communications
Security, ser. CCS ’07. New York, NY, USA: Association for
Computing Machinery, Oct. 2007, pp. 552–561. [Online]. Available:
https://doi.org/10.1145/1315245.1315313

[29] R. Denis-Courmont et al., “Camouflage: Hardware-assisted CFI
for the ARM Linux kernel,” in 2020 57th ACM/IEEE Design
Automation Conference (DAC), Jul. 2020, pp. 1–6. [Online]. Available:
https://ieeexplore.ieee.org/document/9218535

[30] CTSRD, “CTSRD-CHERI/llvm-project,” Capability Hardware
Enhanced RISC Instructions, Jul. 2024. [Online]. Available:
https://github.com/CTSRD-CHERI/llvm-project

[31] H. Almatary et al., “CompartOS: CHERI Compartmentalization
for Embedded Systems,” Jun. 2022. [Online]. Available: http:
//arxiv.org/abs/2206.02852

[32] M. Conte, “Mattconte/tlsf,” Apr. 2016. [Online]. Available:
https://github.com/mattconte/tlsf

[33] R. N. M. Watson et al., “Capability Hardware Enhanced
RISC Instructions: CHERI Instruction-Set Architecture (Version
6),” Computer Laboratory, University of Cambridge, Technical
Report UCAM-CL-TR-907, Apr. 2017. [Online]. Available: http:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-907.pdf

[34] ——, “Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 7),” Computer Laboratory,
University of Cambridge, Technical Report UCAM-CL-TR-927,
Jun. 2019. [Online]. Available: https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-927.pdf

[35] A. Ghiti, “Virtual Memory Layout on RISC-V Linux,” Feb. 2021,
(accessed 2024-07-03). [Online]. Available: https://www.kernel.org/
doc/html/latest/arch/riscv/vm-layout.html

[36] D. Spickett, “Top Byte Ignore For Fun and Memory Savings,”
Feb. 2023, (accessed 2024-07-08). [Online]. Available: https:
//www.linaro.org/blog/top-byte-ignore-for-fun-and-memory-savings/

[37] Intel, Intel Architecture Instruction Set Extensions and Future
Features - Programming Reference, Mar. 2024. [Online]. Avail-
able: https://cdrdv2-public.intel.com/819680/architecture-instruction-
set-extensions-programming-reference.pdf

[38] AMD, AMD64 Architecture Programmer’s Manual Volume
2: System Programming, Mar. 2024. [Online]. Avail-
able: https://www.amd.com/content/dam/amd/en/documents/processor-
tech-docs/programmer-references/24593.pdf

[39] M. Maas and A. Zabrocki, “Working Draft of the RISC-
V J Extension Specification,” Jun. 2024. [Online]. Available:
https://github.com/riscv/riscv-j-extension

[40] E. S. Lowry and C. W. Medlock, “Object code optimization,”
Commun. ACM, vol. 12, no. 1, pp. 13–22, Jan. 1969. [Online].
Available: https://dl.acm.org/doi/10.1145/362835.362838

[41] LLVM team, “LLVM: Lib/Transforms/Scalar/Reg2Mem.cpp Source
File,” Jan. 2019. [Online]. Available: https://llvm.org/doxygen/
Reg2Mem_8cpp_source.html

[42] S. Ruchlejmer, “Secure Rewind and Discard on ARM Morello,” Jul.
2024. [Online]. Available: http://arxiv.org/abs/2407.04757

[43] NSA Center for Assured Software, “Juliet test suite,” https://samate.
nist.gov/SARD/test-suites/112, 2017, accessed: 2024-04-19.

[44] CTSRD, “CTSRD-CHERI/Flute,” Capability Hardware Enhanced
RISC Instructions, Jun. 2024. [Online]. Available: https://github.com/
CTSRD-CHERI/Flute

[45] R. Nikhil, “Bluespec System Verilog: Efficient, correct RTL from
high level specifications,” in Proceedings. Second ACM and IEEE
International Conference on Formal Methods and Models for
Co-Design, 2004. MEMOCODE ’04., Jun. 2004, pp. 69–70. [Online].
Available: https://ieeexplore.ieee.org/document/1459818

[46] T. Newsome et al., “Riscv-software-src/riscv-tests,” RISC-V
International, Jul. 2024. [Online]. Available: https://github.com/riscv-
software-src/riscv-tests

[47] MITRE, “CWE-457: Use of Uninitialized Variable (4.14),” Jul. 2006,
(accessed 2024-07-09). [Online]. Available: https://cwe.mitre.org/data/
definitions/457.html

[48] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All You Ever Wanted
to Know about Dynamic Taint Analysis and Forward Symbolic
Execution (but Might Have Been Afraid to Ask),” in 2010 IEEE
Symposium on Security and Privacy, May 2010, pp. 317–331.
[Online]. Available: https://ieeexplore.ieee.org/document/5504796

[49] M. Podhradsky, R. Tadros, and A. Roach, “GaloisInc/BESSPIN-GFE,”
Galois, Inc., Oct. 2022. [Online]. Available: https://github.com/
GaloisInc/BESSPIN-GFE

[50] EEMBC, “Eembc/coremark,” Embedded Microprocessor Benchmark
Consortium, Jul. 2024. [Online]. Available: https://github.com/eembc/
coremark

[51] GCC developer community, Using the GNU Compiler Collection
For GCC Version 14.1.0, May 2014. [Online]. Available: https:
//gcc.gnu.org/onlinedocs/gcc-14.1.0/gcc.pdf

[52] LLVM team, “Diagnostic flags in Clang,” Jun. 2024, (accessed
2024-07-10). [Online]. Available: https://releases.llvm.org/18.1.8/tools/
clang/docs/DiagnosticsReference.html

[53] J. Seward and N. Nethercote, “Using Valgrind to detect
undefined value errors with bit-precision,” in 2005 USENIX
Annual Technical Conference (USENIX ATC 05). Anaheim,
CA: USENIX Association, Apr. 2005. [Online]. Available:
https://www.usenix.org/conference/2005-usenix-annual-technical-
conference/using-valgrind-detect-undefined-value-errors-bit

[54] D. Bruening and Q. Zhao, “Practical memory checking with
Dr. Memory,” in International Symposium on Code Generation
and Optimization (CGO 2011), Apr. 2011, pp. 213–223. [Online].
Available: https://ieeexplore.ieee.org/document/5764689

https://dl.acm.org/doi/10.1145/3620665.3640416
https://dl.acm.org/doi/10.1145/3037697.3037725
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/safelnit-comprehensive-and-practical-mitigation-uninitialized-read-vulnerabilities/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/safelnit-comprehensive-and-practical-mitigation-uninitialized-read-vulnerabilities/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/safelnit-comprehensive-and-practical-mitigation-uninitialized-read-vulnerabilities/
https://github.com/torvalds/linux/commit/1a92b2ba339221a4afee43adf125fcc9a41353f7
https://github.com/torvalds/linux/commit/1a92b2ba339221a4afee43adf125fcc9a41353f7
https://dl.acm.org/doi/10.1145/3434287
http://arxiv.org/abs/2006.01608
https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jason
https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jason
https://doi.org/10.1145/1315245.1315313
https://ieeexplore.ieee.org/document/9218535
https://github.com/CTSRD-CHERI/llvm-project
http://arxiv.org/abs/2206.02852
http://arxiv.org/abs/2206.02852
https://github.com/mattconte/tlsf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-907.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-907.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf
https://www.kernel.org/doc/html/latest/arch/riscv/vm-layout.html
https://www.kernel.org/doc/html/latest/arch/riscv/vm-layout.html
https://www.linaro.org/blog/top-byte-ignore-for-fun-and-memory-savings/
https://www.linaro.org/blog/top-byte-ignore-for-fun-and-memory-savings/
https://cdrdv2-public.intel.com/819680/architecture-instruction-set-extensions-programming-reference.pdf
https://cdrdv2-public.intel.com/819680/architecture-instruction-set-extensions-programming-reference.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://github.com/riscv/riscv-j-extension
https://dl.acm.org/doi/10.1145/362835.362838
https://llvm.org/doxygen/Reg2Mem_8cpp_source.html
https://llvm.org/doxygen/Reg2Mem_8cpp_source.html
http://arxiv.org/abs/2407.04757
https://samate.nist.gov/SARD/test-suites/112
https://samate.nist.gov/SARD/test-suites/112
https://github.com/CTSRD-CHERI/Flute
https://github.com/CTSRD-CHERI/Flute
https://ieeexplore.ieee.org/document/1459818
https://github.com/riscv-software-src/riscv-tests
https://github.com/riscv-software-src/riscv-tests
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/457.html
https://ieeexplore.ieee.org/document/5504796
https://github.com/GaloisInc/BESSPIN-GFE
https://github.com/GaloisInc/BESSPIN-GFE
https://github.com/eembc/coremark
https://github.com/eembc/coremark
https://gcc.gnu.org/onlinedocs/gcc-14.1.0/gcc.pdf
https://gcc.gnu.org/onlinedocs/gcc-14.1.0/gcc.pdf
https://releases.llvm.org/18.1.8/tools/clang/docs/DiagnosticsReference.html
https://releases.llvm.org/18.1.8/tools/clang/docs/DiagnosticsReference.html
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/using-valgrind-detect-undefined-value-errors-bit
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/using-valgrind-detect-undefined-value-errors-bit
https://ieeexplore.ieee.org/document/5764689

[55] E. Stepanov and K. Serebryany, “MemorySanitizer: Fast detector
of uninitialized memory use in C++,” in Proceedings of
the 13th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, ser. CGO ’15. USA: IEEE
Computer Society, Feb. 2015, pp. 46–55. [Online]. Available:
https://doi.org/10.1145/1250734.1250736

[56] E. D. Berger and B. G. Zorn, “DieHard: Probabilistic memory
safety for unsafe languages,” ACM SIGPLAN Notices, vol. 41,
no. 6, pp. 158–168, Jun. 2006. [Online]. Available: https:
//doi.org/10.1145/1133255.1134000

[57] M. Cao et al., “Different is Good: Detecting the Use of Uninitialized
Variables through Differential Replay,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’19. New York, NY, USA: Association for
Computing Machinery, Nov. 2019, pp. 1883–1897. [Online]. Available:
https://doi.org/10.1145/3319535.3345654

[58] J. Chow et al., “Shredding Your Garbage: Reducing Data Lifetime
Through Secure Deallocation,” 2005.

[59] K. Lu et al., “UniSan: Proactive Kernel Memory Initialization
to Eliminate Data Leakages,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: Association for
Computing Machinery, Oct. 2016, pp. 920–932. [Online]. Available:
https://doi.org/10.1145/2976749.2978366

[60] A. Popov, “How STACKLEAK improves Linux kernel security,”
Nov. 2018, (accessed 2024-07-05). [Online]. Available: https:
//a13xp0p0v.github.io/2018/11/04/stackleak.html

[61] S. Guelton, “Trivial Auto Var Init Experiments,” Dec. 2023,
(accessed 2024-06-30). [Online]. Available: https://serge-sans-
paille.github.io/pythran-stories/trivial-auto-var-init-experiments.html

[62] H. P. Nilsson, “Bug 111523 – Unexpected performance regression
with -ftrivial-auto-var-init=zero for e.g. systemctl unmask,” Sep.
2023, (accessed 2024-07-07). [Online]. Available: https://gcc.gnu.org/
bugzilla/show_bug.cgi?id=111523

[63] Y. Yutaka, “AdLint,” Aug. 2015, (accessed 2024-05-05). [Online].
Available: https://sourceforge.net/projects/adlint/

[64] LLVM team, “Clang-Check,” 2024, (accessed 2024-06-30). [Online].
Available: https://clang.llvm.org/docs/ClangCheck.html

[65] ——, “Clang-Tidy,” 2024, (accessed 2024-05-05). [Online]. Available:
https://clang.llvm.org/extra/clang-tidy/

[66] CodeSecure, “CodeSonar,” May 2023, (accessed 2024-05-05).
[Online]. Available: https://codesecure.com/our-products/codesonar/

[67] Synopsys, “Coverity Scan,” Nov. 2023, (accessed 2024-05-05).
[Online]. Available: https://scan.coverity.com/

[68] D. Marjamäki, “Cppcheck,” May 2024, (accessed 2024-05-05).
[Online]. Available: https://www.cppcheck.com/

[69] D. A. Wheeler, “Flawfinder,” Jan. 2007, (accessed 2024-05-05).
[Online]. Available: https://dwheeler.com/flawfinder/

[70] F. Kirchner et al., “Frama-C: A software analysis perspective,”
Formal Aspects of Computing, vol. 27, no. 3, pp. 573–609, May 2015.
[Online]. Available: https://doi.org/10.1007/s00165-014-0326-7

[71] G. Brat et al., “IKOS: A Framework for Static Analysis Based on
Abstract Interpretation,” in Software Engineering and Formal Methods,
D. Giannakopoulou and G. Salaün, Eds. Cham: Springer International
Publishing, 2014, pp. 271–277.

[72] Facebook, “Infer Static Analyzer,” May 2016, (accessed 2024-05-05).
[Online]. Available: https://fbinfer.com/

[73] D. Evans, “Splint,” Jan. 2002, (accessed 2024-05-05). [Online].
Available: https://splint.org/

[74] H. G. Rice, “Classes of recursively enumerable sets and their
decision problems,” Transactions of the American Mathematical
Society, vol. 74, no. 2, pp. 358–366, 1953. [Online]. Available: https:
//www.ams.org/tran/1953-074-02/S0002-9947-1953-0053041-6/

[75] D. L. Bruening, “Efficient, Transparent, and Comprehensive
Runtime Code Manipulation,” Ph.D. dissertation, Massachusetts
Institute of Technology, Sep. 2004. [Online]. Available: https:
//www.burningcutlery.com/derek/phd.html

[76] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’07. New York, NY, USA: Association
for Computing Machinery, Jun. 2007, pp. 89–100. [Online]. Available:
https://doi.org/10.1145/1250734.1250746

[77] B. Cox et al., “N-Variant Systems A Secretless Framework for
Security through Diversity,” in 15th USENIX Security Symposium
(USENIX Security ’06), ser. USENIX Security ’06. Vancouver, B.C.
Canada: USENIX Association, 2006, p. 16. [Online]. Available:
https://www.usenix.org/conference/15th-usenix-security-symposium/
n-variant-systems-secretless-framework-security-through

[78] B. Salamat et al., “Orchestra: Intrusion detection using parallel
execution and monitoring of program variants in user-space,” in
Proceedings of the 4th ACM European Conference on Computer
Systems, ser. EuroSys ’09. New York, NY, USA: Association for
Computing Machinery, Apr. 2009, pp. 33–46. [Online]. Available:
https://doi.org/10.1145/1519065.1519071

[79] T. Jackson, C. Wimmer, and M. Franz, “Multi-variant program
execution for vulnerability detection and analysis,” in Proceedings
of the Sixth Annual Workshop on Cyber Security and Information
Intelligence Research, ser. CSIIRW ’10. New York, NY, USA:
Association for Computing Machinery, Apr. 2010, pp. 1–4. [Online].
Available: https://doi.org/10.1145/1852666.1852708

[80] K. Koning, H. Bos, and C. Giuffrida, “Secure and Efficient Multi-
Variant Execution Using Hardware-Assisted Process Virtualization,” in
2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), Jun. 2016, pp. 431–442. [Online].
Available: https://ieeexplore.ieee.org/document/7579761

[81] S. Volckaert et al., “Secure and efficient application monitoring and
replication,” in Proceedings of the 2016 USENIX Conference on Usenix
Annual Technical Conference, ser. USENIX ATC ’16. USA: USENIX
Association, Jun. 2016, pp. 167–179.

[82] B. Coppens, B. De Sutter, and S. Volckaert, “Multi-variant execution
environments,” in The Continuing Arms Race: Code-Reuse Attacks
and Defenses. Association for Computing Machinery and Morgan
& Claypool, Mar. 2018, vol. 18, pp. 211–258. [Online]. Available:
https://doi.org/10.1145/3129743.3129752

[83] S. Österlund et al., “kMVX: Detecting Kernel Information Leaks
with Multi-variant Execution,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’19. New York, NY,
USA: Association for Computing Machinery, Apr. 2019, pp. 559–572.
[Online]. Available: https://doi.org/10.1145/3297858.3304054

[84] OpenSSF contributors, “Compiler Options Hardening Guide
for C and C++,” Jun. 2024, (accessed 2024-06-30).
[Online]. Available: https://best.openssf.org/Compiler-Hardening-
Guides/Compiler-Options-Hardening-Guide-for-C-and-C++

[85] L. Skorstengaard, D. Devriese, and L. Birkedal, “Reasoning about
a Machine with Local Capabilities: Provably Safe Stack and
Return Pointer Management,” ACM Trans. Program. Lang. Syst.,
vol. 42, no. 1, pp. 5:1–5:53, Dec. 2019. [Online]. Available:
https://doi.org/10.1145/3363519

[86] K. Serebryany et al., “Memory Tagging and how it improves
C/C++ memory safety,” Feb. 2018. [Online]. Available: http:
//arxiv.org/abs/1802.09517

[87] S. Klabnik and C. Nichols, The Rust Programming Language. USA:
No Starch Press, May 2018.

[88] T. Silva, J. Bispo, and T. Carvalho, “Foundations for a Rust-
Like Borrow Checker for C,” in Proceedings of the 25th
ACM SIGPLAN/SIGBED International Conference on Languages,
Compilers, and Tools for Embedded Systems. Copenhagen
Denmark: ACM, Jun. 2024, pp. 155–165. [Online]. Available:
https://dl.acm.org/doi/10.1145/3652032.3657579

https://doi.org/10.1145/1250734.1250736
https://doi.org/10.1145/1133255.1134000
https://doi.org/10.1145/1133255.1134000
https://doi.org/10.1145/3319535.3345654
https://doi.org/10.1145/2976749.2978366
https://a13xp0p0v.github.io/2018/11/04/stackleak.html
https://a13xp0p0v.github.io/2018/11/04/stackleak.html
https://serge-sans-paille.github.io/pythran-stories/trivial-auto-var-init-experiments.html
https://serge-sans-paille.github.io/pythran-stories/trivial-auto-var-init-experiments.html
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=111523
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=111523
https://sourceforge.net/projects/adlint/
https://clang.llvm.org/docs/ClangCheck.html
https://clang.llvm.org/extra/clang-tidy/
https://codesecure.com/our-products/codesonar/
https://scan.coverity.com/
https://www.cppcheck.com/
https://dwheeler.com/flawfinder/
https://doi.org/10.1007/s00165-014-0326-7
https://fbinfer.com/
https://splint.org/
https://www.ams.org/tran/1953-074-02/S0002-9947-1953-0053041-6/
https://www.ams.org/tran/1953-074-02/S0002-9947-1953-0053041-6/
https://www.burningcutlery.com/derek/phd.html
https://www.burningcutlery.com/derek/phd.html
https://doi.org/10.1145/1250734.1250746
https://www.usenix.org/conference/15th-usenix-security-symposium/n-variant-systems-secretless-framework-security-through
https://www.usenix.org/conference/15th-usenix-security-symposium/n-variant-systems-secretless-framework-security-through
https://doi.org/10.1145/1519065.1519071
https://doi.org/10.1145/1852666.1852708
https://ieeexplore.ieee.org/document/7579761
https://doi.org/10.1145/3129743.3129752
https://doi.org/10.1145/3297858.3304054
https://best.openssf.org/Compiler-Hardening-Guides/Compiler-Options-Hardening-Guide-for-C-and-C++
https://best.openssf.org/Compiler-Hardening-Guides/Compiler-Options-Hardening-Guide-for-C-and-C++
https://doi.org/10.1145/3363519
http://arxiv.org/abs/1802.09517
http://arxiv.org/abs/1802.09517
https://dl.acm.org/doi/10.1145/3652032.3657579

[89] H. Sutter, “Lifetime safety: Preventing common dangling,” Microsoft,
Technical Report P1179 R1 – version 1.1, Nov. 2019. [Online].
Available: https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/
p1179r1.pdf

[90] Lado, “Ladroid/CppBorrowChecker,” Jun. 2024. [Online]. Available:
https://github.com/ladroid/CppBorrowChecker

[91] S. Baxter and C. Mazakas, “Safe C++,” Sep. 2024. [Online].
Available: https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/
p3390r0.html

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf
https://github.com/ladroid/CppBorrowChecker
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3390r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3390r0.html

Appendix A.
Technical Supplements

A.1. Example of Avoided Data Hazard

1 /* ... */
2 csetbounds ca0, ca0, 4
3 ➀ csetwbrbound ca0, ca0, zero
4 li a1, 10
5 ➁ csw a1, 0(ca0)
6 ➂ clw a0, 0(ca0)
7 clc cra, 16(csp)
8 /* ... */

Listing 2: Example of instruction sequence causing data hazard as
described in § 4. At ➀, the csetwbrbound instructions sets the Write-
before-Read bound for the capability in register ca0, turning it into a
conditional capability. At ➁, the capability store word (csw) instructions
performs a store operation on ca0, whereupon the operation bound of
the capability in ca0 is increased at Stage-2 of the pipeline. At the
same time, the capability load word (clw) instruction at ➂ has already

entered the pipeline and prepares a read via the same capability in ca0. Without the the bypass allowing the updated
operation bound to be forwarded from from Stage-2 to Stage-1, this instruction would fail due to the operation bound check
on the out-of-date bound. With the bypass, this sequence of instructions is valid and does not incur additional latency.

A.2. Changes to Capability Encoding

023131416172526274445464748596063

pop phw f otype IE T [11 : 3] TE B [13 : 3] BE

O [13 : 3] OE a
}

Cursor

f : flag p: permissions pop: CP control bits otype: object type a: pointer address

If IE = 0: If IE = 1 and E = 1, 2 :
E = 0

T [2 : 0] = TE

B [2 : 0] = BE

O [2 : 0] = OE [4 : 2]

Lcarry_out =

{
1, if T [11 : 0] < B [11 : 0]
0, otherwise

Lmsb = 0

E = {TE , BE }

T [2 : 0] = 0

B [2 : 0] = 0

O [2 : 0] = OE [E + 2 : E]

Lcarry_out =

{
1, if T [11 : 3] < B [13 : 3]
0, otherwise

Lmsb = 1

Reconstituting the top two bits of T :
T [13 : 12] = B [13 : 12] + Lcarry_out + Lmsb

Decoding the bounds:
address, a = atop = a [47 : E + 14] amid = a [E + 13 : E] alow = a [E − 1 : 0]

top, t = atop + ct T [13 : 0] 0′E
bottom, b = atop + cb B [13 : 0] 0′E

operation o = atop + co O [13 : 0]

If IE = 0 :

O′E

If IE = 1 and E = 1, 2 :

OE [E − 1 : 0]

To calculate the corrections ct, cb and co:
A3 = a [E + 13 : E + 11] (1)

B3 = B [13 : 11] (2)

T3 = T [13 : 11] (3)

O3 = O [13 : 11] (4)

R = B3 − 1 (5)

A3 < R T3 < R ct

false false 0
false true +1
true false −1
true true 0

A3 < R B3 < R cb

false false 0
false true +1
true false −1
true true 0

A3 < R O3 < R co

false false 0
false true +1
true false −1
true true 0

Figure 6: Compressed 128-bit capability format and decoding (adapted from [16] with additions and changes marked in red).

A.3. Examples from the Juliet Test Suite

1 void CWE457_Use_of_Uninitialized_Variable__double_64b_goodB2GSink(void * dataVoidPtr)
2 {
3 /* cast void pointer to a pointer of the appropriate type */
4 double * dataPtr = (double *)dataVoidPtr;
5 /* dereference dataPtr into data */
6 ➂ volatile double data = (*dataPtr);
7 /* FIX: Ensure data is initialized before use */
8 ➃ data = 5.0;
9 printDoubleLine(data);

10 }
11
12 static void goodB2G()
13 {
14 ➀ volatile double data;
15 /* POTENTIAL FLAW: Don’t initialize data */
16 ; /* empty statement needed for some flow variants */
17 ➁ CWE457_Use_of_Uninitialized_Variable__double_63b_goodB2GSink(&data);
18 }
19
20 void CWE457_Use_of_Uninitialized_Variable__double_63_good()
21 {
22 goodG2B();
23 goodB2G();
24 }

Listing 6: A “good” example from the Juliet Test Suite [43] where Mon CHÉRI detects an uninitialized variable use. A
reference to an uninitialized volatile double data ➀ is passed in a function call ➁ and dereferenced and copied ➂ in the
callee where Mon CHÉRI detects an uninitialized load. The memory content of the copy is initialized before use in ➃. The
example is from C/testcases/CWE457_Use_of_Uninitialized_Variable/s01/CWE457_Use_of_Uninitialized_-
Variable__double _63a.c in the official test suite release.

1 __attribute__((writebeforeread , noinline))
2 void CWE457_Use_of_Uninitialized_Variable__int_array_alloca_partial_init_64_bad()
3 {
4 volatile int *data;
5 ❶ data = (int *)ALLOCA(10*sizeof(int));
6 /* POTENTIAL FLAW: Partially initialize data */
7 {
8 int i;
9 ❷ for(i=0; i<(10/2); i++)

10 {
11 data[i] = i;
12 }
13 }
14 ❸ CWE457_Use_of_Uninitialized_Variable__int_array_alloca_partial_init_64b_badSink(&data);
15 }

Listing 7: An example code from the Juliet Test Suite, demonstrating the use of partially initialized arrays. The
function CWE457_Use_of_Uninitialized_Variable__int_array_alloca_partial_init_64_bad allocates memory
for an integer array using ALLOCA ❶ and partially initializes it ❷. The partially initialized array is then passed to
CWE457_Use_of_Uninitialized_Variable__int_array_alloca_partial_init_64b_badSink ❸, and that function
is reading the whole extent of the data array. That uninitialized memory access detected by Mon CHÉRI.

1 define dso_local void @CWE457_Use_of_Uninitialized_Variable__int_array_alloca_partial_init_64_bad() local_unnamed_addr
addrspace(200) #0 !dbg !19 {

2 entry:
3 ➀ %data = alloca ptr addrspace(200), align 16, addrspace(200), !clang.decl.ptr !28
4 %0 = call ptr addrspace(200) @llvm.cheri.bounded.stack.cap.i64(ptr addrspace(200) %data, i64 16)
5 %1 = call ptr addrspace(200) @llvm.cheri.cap.op.bounds.set.i64(ptr addrspace(200) %0, i64 0)
6 ➁ %2 = alloca [40 x i8], align 16, addrspace(200), !dbg !30
7 %3 = call ptr addrspace(200) @llvm.cheri.bounded.stack.cap.i64(ptr addrspace(200) %2, i64 40), !dbg !30
8 %4 = call ptr addrspace(200) @llvm.cheri.cap.op.bounds.set.i64(ptr addrspace(200) %3, i64 0), !dbg !30
9 ➂ store ptr addrspace(200) %4, ptr addrspace(200) %1, align 16, !dbg !32, !tbaa !33

10 ...
11 ➃ store volatile i32 0, ptr addrspace(200) %4, align 16, !dbg !38, !tbaa !42
12 ➄ store volatile ptr addrspace(200) %4, ptr addrspace(200) %1, align 16, !dbg !37
13 ...
14 }

Listing 8: LLVM IR of Listing 7 after CP the store linearization. ➀ allocates memory on the stack for a pointer. ➁ allocates
memory for an array of 40 bytes. ➂ stores the capability %4 at the memory location pointed to by %1. After ➃, the operation
bound is updated at the hardware level, so the capability stored in memory becomes invalid. Our instrumentation adds
another store to update the capability in memory ➄.

	Introduction
	Background
	Capability-Based Addressing
	The cheri Capability Architecture

	Conditional Capability Design
	Challenges
	Conditional Capabilities
	High-Level System Architecture

	Mon CHÉRI Implementation
	Mon CHÉRI Extension for CHERI-RISC-V
	Adding Operation Bounds to Capabilities
	Mon CHÉRI Support for CHERI-LLVM
	Mon CHÉRI Support for Memory Allocators

	Evaluation
	Functional and Security Evaluation on QEMU
	Performance and Area Evaluation on FPGA

	Related Work
	Discussion and Future Work
	Conclusion
	References
	Appendix A: Technical Supplements
	Example of Avoided Data Hazard
	Changes to Capability Encoding
	Examples from the Juliet Test Suite

