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Abstract

Lack of memory-safety and exposure to side channels are two
prominent, persistent challenges for the secure implementation of
software. Memory-safe programming languages promise to signifi-
cantly reduce the prevalence of memory-safety bugs, but make it
more difficult to implement side-channel-resistant code. We aim to
address both memory-safety and side-channel resistance by aug-
menting memory-safe hardware with the ability for data-oblivious
programming. We describe an extension to the CHERI capability
architecture to provide blinded capabilities that allow data-oblivious
computation to be carried out by userspace tasks. We also present
BLACKOUT, our realization of blinded capabilities on a FPGA softcore
based on the speculative out-of-order CHERI-Toooba processor and
extend the CHERI-enabled Clang/LLVM compiler and the CheriBSD
operating system with support for blinded capabilities. BLACKOUT
makes writing side-channel-resistant code easier by making non-
data-oblivious operations via blinded capabilities explicitly fault.
Through rigorous evaluation we show that BLACKOUT ensures mem-
ory operated on through blinded capabilities is securely allocated,
used, and reclaimed and demonstrate that, in benchmarks compara-
ble to those used by previous work, BLACKOUT imposes only a small
performance degradation (1.5% geometric mean) compared to the
baseline CHERI-Toooba processor.
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1 Introduction

Weak memory-safety and side-channel leakage are two significant
security challenges for security-critical software, such as crypto-
graphic libraries. Lack of memory-safety in programming languages
such as C and C++, is one of the oldest, most persistent problems
in computer security. The urgency of addressing the impact of
memory-unsafe code at scale has grown under recent regulatory
scrutiny [73] leading cybersecurity authorities like US CISA [20]
and UK NCSC [70] to advocate for memory-safe languages like
Rust [54], and memory-safe hardware, such as Capability Hard-
ware Enhanced RISC Instructions (CHERI) [90] as potential ways
to eliminate entire classes of memory-safety vulnerabilities. Rust
is poised to benefit from increased uptake thanks to the advocacy
from regulators, but has not yet been proven in many industry
sectors, and a complete rewrite of the vast body of existing C/C++
code in use today at a grand scale is economically impossible.
Constant-time code provides security against timing side-channels
by preventing attackers from inferring secret data by observing
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the timing of operations and instructions, cache effects, etc. Writ-
ing constant-time code by hand is hard, evident from the many
flaws discovered in production side-channel-resistant code [12].
Consequently, industry recommendations urge all but the most
specialized developers to refrain from developing constant-time
code [47] because even slight mistakes can lead to exploitable side
channels. For example, central processing units (CPUs) today do
not treat control flow as a secret, thus allowing secret-dependent
control-flow to leak sensitive information through the timing of
operations or their effects on caches in a complex, hard-to-control,
but observable way. Optimizing compilers can transform code in-
tended to be constant-time into functionally equivalent (in terms of
inputs and output) machine instructions but, for instance, branch
on a secret value [42, 85]. Similarly, hardware optimizations like
speculative execution that are transparent to software can be ex-
ploited to leak secret data through existing side channels [56, 60].
Unlike memory-safety defects, which manifest as crashes or other
faulty program behavior once a bug is triggered, flaws in constant-
time programming fail silently and might be detected only after
successful exploitation, if at all.

This problem is exacerbated in languages such as Rust which
employ higher-level abstractions than C while still being compiled
down to highly-optimized machine code. Several unsuccessful at-
tempts have been made to introduce constant-time-programming
abstractions to the core Rust language [8, 53, 58], leaving developers
with few viable approaches for constant-time Rust programming.
Experts implementing Rust libraries (“crates”) providing primitives
with constant-time properties acknowledge that such efforts are
fundamentally limited because side-channel resistance is not a prop-
erty of the software alone, but that of a system comprising both
software and hardware [1]. A complete solution would require
substantial changes to the compilers to allow severely restricting
optimization on variables containing secret information, incurring
significant cost to performance. We discuss the alternatives em-
ployed in real-world cryptographic libraries in §9.

Memory-safe hardware, such as CHERI, provides an alternative
way to ensure memory-safety properties, particularly in systems
where C and C++ will remain the dominant languages for the
foreseeable future. CHERI effectively addresses memory safety, but
does not inherently protect against side-channel attacks. Previous
work to harden CHERI against transient execution attacks [36]
does not protect against non-transient side-channel attacks. On the
other hand, inherent resistance against side channels would also be
effective against transient execution attacks that employ such side
channels for inferring their effects on microarchitectural properties
like cache state. In principle, CHERI-capable hardware could be
complemented with existing data-oblivious computation solutions
like OISA [102] or BliMe [30] that protect against side channels.
However, these approaches introduce considerable performance



overhead because they require the addition of hardware-managed
tag bits to memory. The adoption of hardware-accelerated memory
tagging is hampered by significant meta-data storage and memory
traffic overheads, since tags must be managed for every piece of
data in memory.
This paper and contributions. In this work, we propose Blinded
Architectural Capabilities and Kernel for Oblivious Userspace Tasks
(BLACKOUT), an extension to the CHERI memory-safety architec-
ture. It provides novel blinded capabilities to augment CHERI with
hardware-enforced taint tracking to guarantee confidentiality of
secret data against conventional and speculative side channels.
Unlike prior approaches, blinded capabilities avoid the need for ad-
ditional tag bits in memory (beyond those employed by the baseline
CHERI design). Inside the CPU, registers are extended with a blind-
edness bit, which is set when the register is loaded with secret data.
Arithmetic logic unit (ALU) operations incorporate taint tracking,
propagating blindedness bits from operands to destination registers;
therefore, any data derived from secret data is also marked as secret.
Instructions operating on such data in registers ensure that secret
data is only written to memory through blinded capabilities which
have exclusive-access to “blinded” areas of memory. Crucially, any
attempt to misuse secret data—such as affecting control flow or
as an address in memory operations—results in a fault, effectively
preventing side-channel leakage.

We also present a data-oblivious programming model for CHERI
C which, aided by our blinded-capability-aware Clang/LLVM com-
piler helps programmers in writing constant-time code for BLACKOUT.
Our changes to the LLVM compiler infrastructure are non-invasive,
consisting of compiler passes that do not interfere with existing
compiler optimizations, but instruct BLACKOUT hardware about
blinded variables. BLACKOUT allows developers to write constant-
time code with minimal additional annotations, benefit from compile-
time diagnostics, and turn previously silent constant-time bugs into
explicit errors reported through CHERI’s exception mechanism.

To demonstrate the practicality of our approach, we realize
blinded capabilities on the CHERI-RISC-V architecture on a field-
programmable gate array (FPGA) softcore based on the specula-
tive out-of-order CHERI-Toooba processor and integrate blinded
capabilities into the CheriBSD operating system (OS) and soft-
ware stack. We evaluate the area and performance overheads using
data-oblivious benchmarks from seminal works in data-oblivious
computing for comparability. BLACKOUT offers the first unified
solution to memory safety and side-channel confidentiality
with minimal overhead, addressing key limitations of existing
methods. In summary, our contributions are:

o A hardware-software co-design for blinded capabilities that
extends CHERI with the ability to carry out data-oblivious
computation in userspace tasks (§5).

o BLACKOUT: a realization of blinded capabilities on a CHERI-
RISC-V FPGA softcore based on the speculative out-of-order
CHERI-Toooba processor IP (§6.1).

e A programming model and software stack for blinded ca-
pabilities and support for BLACKOUT in the CHERI-enabled
Clang/LLVM compiler and CheriBSD OS, thus enabling a
broad class of applications to benefit from BLACKOUT (§6.2).

o Evaluation of BLACKOUT using the CoreMark industry-standard
performance benchmark and data-oblivious benchmarks

from prior work, showing minimal performance impact on
data-oblivious code compared to the baseline CHERI-RISC-V
processor (1.5%), and moderate impact compared to a pro-
cessor with neither CHERI's memory-safety nor BLACKOUT
enforcement (23.5%) (§7).
Source code artifacts for the BLACKOUT hardware and software
stack are available at https://github.com/blindedcapabilities.

2 Background

2.1 The CHERI capability architecture

CHERI is an instruction-set architecture (ISA) extension that inte-
grates a capability-based hardware-software co-design for memory
protection. It extends conventional ISAs with hardware-supported
capabilities to verify memory accesses via code or data pointers.
The CHERI ISA specification [91] defines how capabilities are repre-
sented in registers and memory and offers capability-aware instruc-
tions to manipulate them. Current implementations of CHERI sup-
port the RISC-V and Arm8-A instruction sets with CHERI-enabled
processors developed by Arm [43], Microsoft [5] and companies
and universities in the RISC-V ecosystem.

Figure 1 illustrates the in-memory representation of a CHERI
capability. Each capability is double the width of the native pointer
type: 128 bits on 64-bit platforms and 64 bits on 32-bit platforms.
A single-bit validity tag @, stored separately, ensures integrity by
invalidating capabilities manipulated by non-capability-aware in-
structions. Capability-aware instructions preserve tags as long as
the operation on a capability is valid but prevent unauthorized ma-
nipulation and injection of arbitrary capabilities. These include the
store capability via capability (csc) and load capability via capability
(clc) instructions which are used to store, respectively load, capa-
bilities to and from locations in memory identified by a capability
operand. In a CHERI-enhanced architecture, address and general-
purpose CPU registers are extended to store the full capability
representation. For example, in CHERI-RISC-V, all general-purpose
registers are 128-bit capability registers; the program counter (PC)
and stack pointer (SP) are represented by program counter capabil-
ity (pcc) and stack pointer capability (csp) registers, respectively.
The capabilities themselves include several fields:

e Permissions (@) define allowed operations.

e Object type (®) enables temporary “sealing”, rendering a
capability unusable until it is “unsealed” by a special instruc-
tion. This enables opaque pointer types and fine-grained
in-process isolation.

e Bounds (®) specify the accessible memory range relative
to the baseline architecture address (®). They are stored in
a compressed format [99] to reduce memory footprint, but
require stricter alignment on larger object allocations.

New capabilities are always derived from an existing capability,
with their lineage traceable to initial boot-time capabilities. CHERI
enforces monotonicity ensuring newly created capabilities cannot
exceed the permissions or bounds of their parent. The candperm
instruction allows the permissions of a capability to be dropped
according to a given mask, but not gained. Controlled exceptions,
such as sealed capabilities for exception handling and compartmen-
talization, allow limited non-monotonicity.
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Figure 1: In-memory representation of CHERI capabilities adapted from Watson et al. [90]

Spatial- and temporal-safety enforcement. The bounds, stored
with the virtual address, underpin CHERI’s spatial memory safety.
Each memory allocation is associated with a capability describing
its valid address range and access permissions. This enables inher-
ent spatial memory-safety properties. To provide temporary safety
for heap-based allocations, CHERI requires a capability revocation
mechanism, such as Cornucopia [32]. Cornucopia scans for capabil-
ities pointing to freed memory, allowing such stale capabilities to
be revoked. Extensions to the CHERI software and hardware have
also explored sandboxing [19], and initialization safety [41, 45].

CHERI-enabled software stack. CheriBSD [25] is a modified
version of the open-source FreeBSD operating system, designed to
support CHERI-RISC-V both in emulation and on hardware. It is a
fully functional OS prototype, demonstrating how CHERI support
can be integrated into a conventional OS design. The CheriBSD
kernel and userspace can be built in “pure-capability” CHERI C/C++
which means all conventional memory pointers are replaced by
corresponding capabilities by the CHERI-LLVM compiler. In pure-
capability mode, compiler-generated code derives bounded capa-
bilities for automatic (stack-allocated) variables from the csp. For
global variables, the run-time linker populates into a capability-
aware global offset table (GOT), also referred to as the captable. Ca-
pabilities for heap-allocated data is handled by Cornucopia which
is integrated into CheriBSD via a shim layer, known as the malloc
revocation shim (MRS), which sits on top of the underlying BSD
libc’s memory allocator. Consequently, CheriBSD enforces both
spatial and temporal memory safety for CHERI-enabled software.

2.2 Side-Channel Leakage

Side channels are unintended outputs of a system that can leak
information about its behavior. CPU side channels are caused by
implementation details, often the result of performance optimiza-
tions, such as caching mechanisms and speculative execution. At-
tackers can extract sensitive information by observing variations in
execution time, power consumption, or electromagnetic emissions
that are inadvertently output by these microarchitectural features.
In this paper, we focus on timing side channels as they are the most
commonly used in remote attacks.

A prominent example of timing side channels is cache timing,
which leaks information by measuring cache access latency. By
comparing the latency to a predetermined threshold, software
can determine whether an address is already cached by the CPU.
Prime+Probe [74], FLUSH+RELOAD [101] and Flush+Flush [44] are
example side-channel attacks using different techniques to make
this timing difference dependent on secret data and extract it from
the system. Transient attacks like Spectre [56] and Meltdown [60],
expose new ways to access (architecturally inaccessible) secrets
and leak them using side channels like cache timing. Speculative
taint-tracking techniques [103], such as SpectreGuard [37], Con-
TExXT [86], and ProSpeCT [24], mitigate Spectre-style attacks by

delaying instructions dependent on speculatively loaded secrets,
but mitigating side-channels in general falls on the developer.

Preventing side-channel leakage is difficult for software develop-
ers. Software is often written in high-level languages that abstract
away the individual CPU instructions operating on secret data,
leaving decisions to the underlying compilers and software stack.
Even lower-level languages like C do not provide developers with
sufficient controls to prevent side-channel leakage, as the compiler
can introduce side channels in the generated assembly. Further-
more, even with seemingly side-channel-free assembly, hardware
optimizations transparent to software (and often undocumented),
such as speculation and out-of-order execution, can inadvertently
leak secrets, as described above with the Spectre vulnerabilities. The
challenge of preventing side-channel leakage is therefore present at
every level of the software and hardware stack, and must be solved
through hardware-software co-design.

2.3 Data-Oblivious Instruction Set Architectures

Data-oblivious computation refers to algorithms and software that
process data in a manner where their control-flow and memory
access patterns are not affected by their input data. Constant-time
code, which hardens software against side-channels, relies on data-
oblivious algorithms and that the CPU cycles consumed by indi-
vidual hardware instructions are independent of their operands’
values!. Historically, developers of security-critical code sensitive
to side-channels, e.g., cryptographic implementations, have relied
on obscure information on instruction timing differences obtained
through extensive experiments on different ISAs [77]. In recent
years, major processor manufacturers have began to document
instructions with data-operand independent timing (DIT) [48] and
incorporate DIT modes into their designs [49, 63].

The challenge of ensuring the correctness of data-oblivious soft-
ware implementations, however, remains. Verifying whether a pro-
gram written in a high-level language is data-oblivious has a num-
ber of challenges (§9). Chief among them is that data-obliviousness
can only be defined at a machine-code level. This observation has
motivated the creation of data-oblivious ISAs that, similar to data
operand independent timing modes, provide modes of operation
for CPUs to ensure that instructions operating on sensitive data
do so in a data-oblivious manner. Previous works use hardware-
enforced taint tracking using “blindedness tags” [29] and dedicated
memory partitions [102]. These approaches result in best-case per-
formance overheads from 8% to 35% (worst case involving an order
of magnitude slowdown). Memory tagging exhibits poor perfor-
mance as the number of tag bits increase. Schemes such as the
Arm architecture’s Memory Tagging Extension (MTE), used for
memory-safety sanitation, limit the number of tag bits to 4. MTE
further mitigates performance impact by allowing tag checks to oc-
cur asynchronously. But asynchronous tag checks are not practical



for maintaining data-obliviousness as data-oblivious ISAs must be
able to prevent data accesses before confidentiality is violated.

3 System and Adversary Model

We assume the same system model as in CHERI. We trust the OS
to prevent memory containing sensitive information from being
exposed to other processes after a process exits, either normally
or as a result of CHERI exceptions. We assume memory-safety
properties provided by CHERI, which prevent adversaries from
tampering with the program’s control flow or directly inferring
memory contents beyond that which are exposed during normal
program operation. We also assume a DIT [63] mode is available.
We assume the same adversary model as in CHERI. In addition,
we assume the adversary has the ability to observe side channels
during a program’s execution, possibly from another process run-
ning on the system simultaneously. In this work, we consider side-
channel threats that can be mitigated by data-oblivious software,
including timing side channels, such as cache timing [18, 44, 74, 101],
instruction timing [78] (with DIT) and port-contention timing [4].
We also consider transient execution attacks that leak informa-
tion loaded by mis-speculated instructions within the same address
space, such as Spectre [46, 56, 57, 64], in scope, even if mis-training
can be done across address spaces [14]. Attacks with transient
instructions that can load data across address spaces, such as Melt-
down and microarchitectural data sampling (including load-store-
buffers) [15], and transient capability forgery, such as Meltdown-
CF [36], are out of scope, but can be prevented by using Capability
Speculation Contracts (CSCs) [36]. Attacks that require physical
access to the system, e.g., to measure power consumption, or those
through direct memory access (DMA) peripherals are out of scope.

4 Goals and Challenges

In this section, we outline our overarching goals and the primary
challenges associated with them.

4.1 Goals and Primary Challenges

Adapting hardware-enforced taint tracking to capability-
based architectures. Our primary goal is integrating data-oblivious
computation with the CHERI protection model. While it may seem
straightforward to implement a data-oblivious ISA on top of an
CHERI-enabled architecture, there are two key challenges to over-
come. First, the CHERI architecture is intended to be applied onto
conventional ISAs such as RISC-V and Arm. Bolting an existing
data-oblivious ISA (§2.3) on top of CHERI will require invasive
changes to CHERI and/or the underlying architecture making real-
world adoption less realistic. Second, significant changes to the
architecture will negatively impact performance.

To address these challenges, we propose enhancing the existing
CHERI capability model with blinded capabilities which ensure data
accessed through them is operated on exclusively in a data-oblivious
manner. Memory managed by blinded capabilities is referred to as
blinded memory. This avoids the need to propagate blindedness tags

“Constant-time code” is a misnomer, as even side-channel-resistant code may still
exhibit variable latency if the latency differences are not due to the (secret) data values.
Common sources of such latencies include instruction-level latencies due to frequency
scaling, or unpredictable contention of data buses for loads and stores.

to memory thus overcoming the drawbacks of simply integrating
an existing data-oblivious ISA with CHERI [30, 102].
Practical programming model for blinded capabilities. Our
second goal is introducing a practical programming model for
blinded capabilities. CHERI-enabled languages (CHERI C/C++ [92])
enforce memory-safety properties (§2.1) at run-time whereas data-
oblivious ISAs enforce oblivious access to secret data (§5). Thus, our
model must adhere to both CHERI and data-oblivious properties.
A particular challenge arises because the CHERI compiler oc-
casionally allows memory accesses without explicit capabilities
(e.g., certain stack accesses). To ensure such accesses do not target
blinded memory (which would raise a hardware fault), our blinded
capability-enhanced compiler must explicitly enforce that all ac-
cesses to blinded stack variables occurs through blinded capabilities.
We describe this compiler enhancement further in §5 and §6.2.

4.2 Additional Challenges

Integrating blinded memory management with the CHERI protec-
tion model introduces several additional challenges.

Maintaining capability monotonicity. Introducing blinded capa-
bilities adds new privileges that must align with CHERI’s existing
monotonicity properties. Our design considers “non-blinded” a dis-
tinct permission, which, when removed, permanently classifies a ca-
pability as a blinded capability. This upholds monotonicity—blinded
capabilities cannot be promoted to regular, non-blinded capabilities.
Exclusive access to blinded memory. As blinded capabilities
are based on CHERI capabilities, they inherently face the revoca-
tion problem. Deallocated memory regions may still be accessible
through residual capabilities, risking use-after-free vulnerabilities
and inadvertent disclosure of blinded data. Our design addresses
this by ensuring new blinded capabilities obtain exclusive access to
newly allocated blinded memory inside the process. Thus, blinded
memory cannot be subject to use-after-free conditions from resid-
ual, non-blinded capabilities to it.

Securely reclaiming blinded memory. Blinded memory must
be securely reclaimed, as residual sensitive data may remain upon
deallocation. Since CHERI does not inherently guarantee memory
initialization safety, we need to ensure secure deallocation through
automatic memory clearing with blinded capability-enhanced com-
piler and a blinded capability-enhanced allocator (§6.2).

5 Blinded Capability Design

Blinded capabilities introduce a new programming model that de-
velopers must follow to protect their sensitive data. While providing
a completely unrestricted programming model can seem appealing,
it 1) cannot guarantee exclusive access to blinded data (§4.2) and
2) does not guide the developer towards avoiding hardware faults
caused by security violations. The end result is that the developer
must manually analyze and transform their code to prevent it from
faulting. The goal of our programming model is therefore to provide
strong security guarantees for memory safety and side-channel pro-
tection by guiding the developer using compiler warnings/errors,
and, where possible, automatically applying code transformations.

5.1 Software Architecture

Figure 2 shows a high-level overview of the blinded capability soft-
ware stack. Developers can indicate to the compiler that a variable is
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sensitive by annotating its declaration with the blinded attribute ®.
We refer to such variables as blinded variables. The compiler will
then ensure that any accesses to blinded variables are permitted
only through blinded capabilities, guaranteeing that the values
of these variables will always be blinded when loaded into regis-
ters. We refer to registers holding blinded data as blinded registers.
Blinded memory can be dynamically allocated using the blinded
allocator application programming interface (API) @ which re-
turns a blinded capability. Similarly, the compiler enforces that
references to blinded memory cannot be assigned to non-blinded
variables. Inside the compiler, we modify the Clang front-end to
emit blinded attributes to the LLVM intermediate representation
(IR) of the compiled program @. These are used by the blinded capa-
bility analysis ® and instrumentation passes ® to produce a blinded

capability-instrumented application binary. Global variables anno-
tated with blinded attribute are reserved from a separate blinded
data section by the static linker.

At run-time, the blinded-capability-enhanced application @ re-
quires platform support in the form of the blinded allocator ® and
an OS with a CHERI-capable kernel that has been altered to en-
sure its internal handling of capabilities does not trigger blinded
capability violations. C startup code added by the compiler to @
is responsible for initializing capabilities pointing to data in the
blinded data section as blinded capabilities. System software not
making use of blinded capabilities does not require modification
(apart from their adaptation to CHERI). We discuss the compiler
enhancements and operating system changes in detail in §6.2.



{ bool
(2}

#define [[clang::annotate_type("blinded")1]
©® __attribute__ ((blinded))

int data_oblivious_select(bool cond, int x, int y) {
// c declared blinded and

// accessed via blinded capability

<3

// res not declared blinded
// but blindedness is inferred

int res;
©® Compiler infers res blinded from ®
// HW propagates

&
(x * c) + (y x (le));
// blindedness to res

{ res =
(—) ® Compiler infers res is blinded from this assignment

return res;

// Uses store via blinded capability
// (argument already in register)
® Compiler knows c is already blinded based on declaration

= cond;

3

Listing 1: Data oblivious conditional select function which
returns one of the arguments x or y based on the value of
cond demonstrating the inference capabilities of the blinded
capability-enhanced compiler.

Table 1: Blindedness bit propagation and side-channel pre-
vention rules enforced by BLACKOUT hardware. x represents
a “don’t care” condition, which indicates the actual signal
value or values have no impact on the decision outcome.

Instruction Blinded Blinded Decisi Result
capability blindedness
Arithmetic / R Op1 Op2
Logic a b Propagate avb
in Addr Reg Addr Reg Condition Ops
. no 0 0 Allow -
Branching no 1 X Fault -
no X 1 Fault -
yes X X Fault -
in Addr Reg Addr Reg
Load no 0 Propagate 0
yes 0 Propagate 1
X 1 Fault -
in Addr Reg Addr Reg Data Reg
no 0 0 Allow -
Store no 0 1 Fault -
yes 0 X Allow -
X 1 X Fault -

5.2 Hardware architecture

Figure 3 shows the high-level overview of the hardware changes
needed to support blinded capabilities (shown in dark gray) applied
to an out-of-order RISC-V core, such as MIT’s RISCY-OO [104] or
Bluespec’s Toooba [71] processor intellectual property (IP). Apart
from the changes introduced by CHERI (shown in light gray) the ma-
jority of the changes necessary in the CPU are to facilitate in-CPU
taint tracking. In the register file, the general-purpose capability
registers are extended to hold an additional blindedness bit © which
tracks whether the register is blinded. The taint-propagation hard-
ware logic @ will in turn ensure that any data derived from these
blinded registers, e.g., through arithmetic operations, will also “be
blinded”, i.e., it sets the blindedness bit of the destination register.

void bad_func(bool cond, int x, int #*out) {

®{
if (cond)

b = a; // HW propagates blindedness to b

@ Compiler undecided on whether b becomes blinded

j *out = a; // HW fault if out non-blinded (I1)
® Allowed by compiler as out might be blinded

)
a;

int // a declared blinded

int b;

X5

if(a !
b

else
return

// Violates I4

@ Rejected by compiler as blinded a used in control-flow decision

if (b 1= 0) // HW fault if b blinded (I4)
*out = a; // HW fault if out non-blinded (I1)
3 ® Control-flow allowed by compiler as b might be non-blinded

Listing 2: Non-data-oblivious function which attempts to
branch on a blinded condition and write blinded data to a
possibly non-blinded output parameter. This code is rejected
by the blinded capability-enhanced compiler.

Allblinded data is bound by a set of invariants (I1 to I5), stemming
from the need to enforce exclusive access to blinded memory (§4.2),
and side-channel prevention.

Exclusive access invariants:
I1 Blinded data cannot be stored into memory using non-blinded
capabilities.
12 No capability of any kind can be stored into blinded memory.
I3 Bounds of valid blinded and non-blinded capabilities must not
simultaneously overlap. However, once a region is released (i.e.,
is no longer accessible through a valid capability, e.g., due to
heap deallocations or stack frame pops), it can be assigned to
future blinded or non-blinded capabilities.
Side-channel protection invariants:
14 Control-flow instructions cannot use blinded operands as con-
ditions or target addresses.
I5 Load and store instructions cannot use blinded operands as
addresses.

I1 is enforced by hardware through additional blinded store and
load checks ® in the memory execution pipeline which is responsi-
ble for the execution of any load and store instructions, whereas
14 and I5 are enforced by side-channel prevention logic integrated
into any pipeline which is responsible for instructions with blinded
operands @. Any attempt by software to violate I1, I4 and I5 will re-
sult in a hardware fault. Table 1 shows the full blindedness bit prop-
agation and side-channel prevention rules enforced by BLACKOUT.

I3 cannot be efficiently enforced by hardware alone. As men-
tioned in §4.2, blinded memory reclaimed when blinded capabilities
are destroyed must be erased to avoid leaking blinded data; this is
handled by the compiler and memory allocator for stack and heap
variables, respectively (Figure 2, §6.2). The combination of hard-
ware, compiler and software stack guarantees data confidentiality.

Data-oblivious computation ensures that control flow and mem-
ory accesses don’t depend on secret data. Outputs, however, may
be non-secret (e.g., decrypted data meant for users). In practice,



such output data cannot be left blinded indefinitely as some re-
sult of data-oblivious computation must eventually be extracted. In
BLACKOUT, results can be marked non-secret by issuing non-blinded
capabilities for result buffers. This reveals the final, non-secret re-
sult of blinded computation by relaxing invariant I3 in a controlled
way to unblind the result. For example, since I3 is (in part) enforced
by the blinded allocator, the allocator can expose a separate API
for obtaining blinded results that, in contrast to, regular blinded
memory returns two capabilities for a dedicated area for blinded
results: one which is blinded, and used to write to the area, and the
other non-blinded, but only usable for reading the result. However,
the developer must use the blinded capability to the result area
carefully to prevent accidental leakage of secret data. We discuss
additional options to secure extraction further in §8.

5.3 Motivating Examples

The concrete examples in Listings 1 and 2 demonstrate how the
hardware and the compiler work together to prevent blinded mem-
ory leakage. The hardware ensures that taint tracking is both accu-
rate and precise (no under- or over-tainting occurs in the hardware),
and that attempted leaks cause a fault. The compiler ensures that
capabilities respect exclusive blinded memory access, and that re-
claimed blinded stack memory is zeroed out.

The compile-time analysis is dependent on the developer provid-
ing (initial) information about which variables are expected to con-
tain sensitive information through blinded attributes (__blinded,
@ in Listing 1). Optionally, the developer can also declare functions
blinded (__attribute__((blinded)), @ in Listing 1). This clearly
identifies functions expected to return blinded data, improving de-
veloper ergonomics by enhancing the readability of data-oblivious
code. The compile-time analysis is not limited to the information
provided by the developer. For example, in Listing 1 @, the compiler
can infer the variable res must be blinded due to the assignment
from c tainting it at .

Listing 2 shows a non-data-oblivious function which would fault
at run-time due to violating I4 (and possibly I1). This example
demonstrates that the compiler can reject some non-data-oblivious
programs outright. However, as discussed in § 2.3, compile-time
data-obliviousness analysis cannot be sound as data-obliviousness
is ultimately a property at machine-code level. For example, at
@, the compiler cannot know whether cond==1. Thus, it cannot
prove that b is always blinded and must allow the control flow at ®.
However, if cond==1 at run time, the hardware will propagate the
blindedness bit to b at @; the subsequent branch at ® will fault.

For ®, the compiler does not know whether out is a blinded
capability and must also allow compilation. If out at run time is
referenced by an unblinded capability, the hardware will detect the
violating store and raise a fault.

The hardware would fault at @ due to violation of 14. However,
since it is detectable by the compiler, we force a compilation er-
ror to inform the developer early in the development cycle. This
is especially useful for code paths that are rarely exercised with
real workloads and require fuzzing techniques to uncover. More
annotations allow the compiler to make more informed decisions
and detect violating operations that it cannot infer on its own.

6 BLACKOUT Blinded Capability Implementation

We now describe BLACKOUT, our realization of blinded capabilities
for CHERI-RISCV, CHERI-LLVM, and the CheriBSD OS.

6.1 BLACKOUT CHERI-RISC-V CPU

We implement blinded capabilities in register-transfer level (RTL)
on CHERI-Toooba [36], a CHERI-enabled RISC-V processor based
on Bluespec’s speculative out-of-order Toooba IP [71]. Unlike pre-
vious data-oblivious ISAs [30, 102], BLACKOUT does not add any ad-
ditional instructions to the underlying ISA; all architectural changes
are achieved by adjusting the CHERI permission model.
Non-oblivious access permission. We introduce a new “non-
oblivious access” permission bit in the previously unused section
of the CHERI capability representation. The CHERI-Toooba IP al-
locates 12 bits for hardware permissions and 4 bits for user per-
missions, leaving 3 bits unused. By default, the blinded capability
bit in newly created capabilities is set to 1. In this initial configura-
tion, the enforcement of blinded capabilities is turned off, allowing
the capability to be used freely within its defined bounds. When
the existing CHERI candperm instruction (§ 2.1) is invoked with
the blinded capability permission as an operand, it changes the
non-oblivious access bit to 0, thereby enabling the enforcement of
blinded capabilities. Defining the non-oblivious access bit this way
means that a capability with this permission is allowed to handle
data in a non-oblivious manner.

Registers & taint-tracking. CPU registers are extended with an
additional blindedness bit to signify whether the data stored in the
register is blinded. Any load instructions executed with a blinded
capability set the blindedness bit of the target register to 1. Store
instructions with a blinded capability only store the data in mem-
ory, but not the blindedness bit. Data confidentiality is maintained
by the exclusive access invariants (I1 to I3, §5), which ensure that
blinded data stored in memory is only accessible through blinded
capabilities. Register-to-register instructions, such as arithmetic
and logical operations, propagate the blindedness bit: if the output
depends on a blinded input, the output becomes blinded. Overwrit-
ing a register containing blinded data with non-blinded data will
result in that register’s blindedness bit to be unset.

Limiting impact on capability-modifying instructions. We
prohibit valid capabilities from being blinded (12, §5). The execution
of any capability-modifying instruction with operands that would
result in a blinded capability causes a fault. Enforcing this invari-
ant allows us to avoid unnecessarily making capability-modifying
instructions data-oblivious. Note that this enforcement does not
break the CHERI programming model; “blinded blinded capabilities”
are themselves redundant as they can never be dereferenced to
access memory in order to maintain confidentiality (I5, §5).
Spilling registers containing blinded data. Blinded data can
reside in any general-purpose capability register, including those
designated as caller- or callee-saved by the RISC-V application bi-
nary interface (ABI). The CHERI-RISC-V compiler can generate
code that spills blinded registers using csc instructions, and restore
them with clc instructions. Normally, spilling blinded registers
onto the stack via the non-blinded csp violates invariant I1 (§5) as
spills target non-blinded memory. However, since stack memory
allocated for registers spills is inaccessible by other capabilities than



the csp, CHERI’s memory-safety guarantees ensure that spilled reg-
ister cannot be accessed improperly. Thus, we permit BLACKOUT’s
csc and clc instructions to spill and restore blinded registers csp.

However, another challenge arises: the non-blinded csp gen-
erates non-blinded data when storing spilled values. This causes
ambiguity when restoring spilled registers, as the CPU cannot dis-
tinguish between blinded and non-blinded register spills. To address
this, BLACKOUT’s csc emits special blinded register records (BRRs) as
a result of spilling blinded registers. A BRR is a 128-bit structure
containing the spilled value and 64-bit marker. This marker differ-
entiates BRRs from conventional CHERI capabilities and maintains
their validity tags. When a spilled capability register is restored, the
validity tag signals that the value restored from memory is either a
capability or a BRR. The marker indicates whether the value is a
BRR, ensuring the destination register is correctly blinded.
Transient execution. As mentioned in §2.2, hardware optimiza-
tions, such as speculation, can inadvertently introduce side channels
when operating on secrets. To protect blinded data against such
leakage, we ensure that any blinded data flowing to decision-making
parts of the hardware (such as branch predictors) are zeroed out.
This guarantees that execution is truly oblivious to blinded data,
both architecturally and transiently. This is similar to approaches
used in prior work [30, 102].

6.2 BLACKOUT Software Stack

We leverage Clang’s existing annotate_type attribute designed
for static analysis tools [13] for the __blinded attribute. Normally,
annotate_type is not propagated to the LLVM IR. Thus, we extend
Clang to emit __blinded attributes into the IR (@, Figure 2).

We introduce an additional analysis pass for blinded variables
(®, Figure 2) in the LLVM-backend. This pass performs recursive
dependency analysis to trace all uses of __blinded variables in
data flows involving the store, load, and GetElementPtr (GEP) IR
instructions. By recursively analyzing flows from blinded source
instructions, e.g., loads from variables declared as __blinded, the
pass automatically propagates the blindedness property to variables
acting as sinks, blinding them at their respective point of allocation.

We additionally introduce an instrumentation pass (®, Figure 2)
that transforms stack allocations (alloca IR instructions) for vari-
ables annotated with __blinded. The instrumentation adds the
1lvm.cheri.cap.perms.and intrinsic to each annotated alloca to
unset the “non-blinded” permission control bit, thus turning the
associated capabilitity into a blinded capability. Consequently, all
stack memory associated with __blinded variables are only acces-
sible through blinded capabilities.

Blinded capability-enhanced allocator. We extended the Cornu-
copia revocation mechanism to provide ablinded_malloc API that
returns blinded capabilities to blinded heap allocations. To meet I3
(§5), such blinded heap allocations must not overlap with other, non-
blinded allocations. This ensures the blinded capability returned
blinded_malloc has exclusive access to the newly created allo-
cation. The blinded_malloc API relies on Cornucopia to ensure
the blinded capability does not overlap with any concurrently ex-
isting capabilities. BLACKOUT’s blinded_malloc is integrated into
CheriBSD via the MRS (similar to the integration of Cornucopia, dis-
cussed in §2.1). This makes blinded capabilities allocator-agnostic,

allowing userspace processes to employ different underlying allo-
cators as long as allocations occur via the shim.

Securely reclaiming blinded memory. Recall from §4.2 that
blinded memory must be securely reclaimed to prevent informa-
tion leaking from previously blinded memory regions. BLACKOUT
implements explicit zeroing policies for blinded heap and stack al-
locations. For blinded heap allocation, the free API, implemented
in the shim, inspects whether memory to be deallocated is blinded
and erases the contents of blinded allocations before freeing it. For
stack-allocated blinded variables, the compiler automatically in-
serts a memset IR instruction to zero out their memory immediately
after the variable’s lifetime ends. This ensures sensitive data from
blinded variables is securely erased, preventing unintended reuse
or leakage when stack frames are reallocated. Blinded global data
persists until the process terminates and consequently does not
need to be reclaimed. The contents of (physical) pages are zeroed
out by the OS before they are recycled for other processes.
Integration to CheriBSD. As discussed in §6.1, any newly cre-
ated capability must initially be configured with its “non-blinded”
permission bit set. To support blinded capabilities in CheriBSD, we
perform a thorough scan of all CheriBSD code to ensure that any
derived permissions (e.g., for drivers or userspace) also unset the
“non-blinded” permissions. We also extend the CheriBSD CPU ex-
ception and signal handlers to handle blinded capability exceptions
and the new signal introduced to the BLACKOUT CHERI-Toooba Core.
We integrated blinded capabilities into CheriBSD 24.05, resulting
in a total of 100 lines of code changes over 14 distinct files.

7 Evaluation

We evaluate the overheads (area and performance) and security of
BLACKOUT. To evaluate overheads, we extended the CHERI-RISC-V
Toooba FPGA softcore (RV64ACDFIMSUxCHERI), which is based
on the open-source Bluespec RISC-V 64-bit Toooba core.

We use the BESSPIN-GFE security evaluation platform [76],
which has out-of-the-box support for the CHERI-Toooba softcore,
replacing the standard core with our Blinded CHERI-Toooba. We
synthesize the system-on-chip (SoC) at 25MHz (default for BESSPIN-
GFE) targeting the Xilinx Virtex UltraScale+ VCU118 FPGA.

7.1 Power & resource usage

Table 2 shows the power and resource usage obtained from Xilinx
Vivado 2019.1. The overheads are minimal (~ 1% area and ~ 5%
power) compared to the unmodified CHERI-Toooba. This is ex-
pected since our hardware additions require no additional storage
in memory or caches and only a single additional bit for registers.

7.2 Performance

For performance measurements, we run several benchmarks on the
VCU118 FPGA. First, we evaluate the impact of BLACKOUT CHERI-
Toooba on unblinded workloads by running the EEMBC CoreMark
benchmark [38] bare-metal on the GFE for 5 x 10? iterations over
three separate test runs. Table 3 shows the mean result demon-
strating that there is only a negligible effect on performance for
unblinded workloads between the unmodified CHERI-Toooba core
and our BLACKOUT CHERI-Toooba variant. We also obtain timing re-
ports from Xilinx Vivado to show the effect of our hardware changes
on the maximum clock frequency attainable. Both BLACKOUT and



Table 2: Area and power costs on VCU118 @ 25MHz expressed in number of LUTs and registers, and Watts respectively.

logic A(%) memory A(%) registers A(%) power A(%)
CHERI-Toooba Core 697508 - 20852 - 412493 - 6.205 -
Blinded CHERI-Toooba Core 705863 1.2 20855 0.0 412913 0.1 6.536 5.3

Table 3: Performance cost on VCU118 @ 25MHz expressed as CoreMark test results for 5x10° iterations. The CoreMark score
for a processor is reported as CoreMark-iterations-per-second-per-core-MHz. The A is relative to CHERI-Toooba Core results.

Total ticks A Total time (sec) A Iterations/sec A Score
CHERI-Toooba
baseline (nocap) 927674227 - 37 - 135 - 5.4
purecap 951983228 24309000 2.62% 38 1 3% 131 4 23% 524
Blinded CHERI-Toooba
baseline (nocap) 927729879 55652 0.01% 37 0 0% 135 0 0% 5.4
purecap 952083879 24409652 2.63% 38 1 3% 131 4 23% 524

the baseline are synthesizable at 25MHz, and the worst negative
slack (WNS) for BLACKOUT is 0.08ns compared to 0.06ns for the
baseline, demonstrating no significant effect on clock frequency.
OISA benchmarks. Second, for blinded workloads, we evaluate
the performance impact of BLACKOUT using five OISA benchmarks
adapted from Yu et al. [102]. To adapt them to BLACKOUT, we simply
blind secret inputs with the __blinded attribute, change dynamic
allocations to use our blinded allocator API, and compile the bench-
marks using our blinded capability-enhanced compiler. Porting
the OISA benchmarks to BLACKOUT took 1-5 LoC changes (<1%)
per benchmark. We measured the performance on CheriBSD with
BLACKOUT support in pure-capability mode with the Cornucopia
revocation mechanism enabled. Our setup follows the CheriBSD
benchmark guide [26], with the exception of running the BLACKOUT
benchmarks in pure-capability mode (§2.1) with blinded capabilities,
and enabling the experimental Cornucopia revocation mechanism,
which is essential to guarantee exclusive access for blinded capa-
bilities. We compiled all benchmarks with -03 and measured the
combined user and system time using the time command. This
measures the entire lifetime of blinded capabilities—including capa-
bility creation, algorithm execution, and memory reclamation (i.e.,
zeroing out blinded memory). For the findmax, binary_search,
and integer_sort benchmarks, we used blinded input arrays con-
taining 2V integers. For the matrix multiplication benchmark, we
multiplied two square matrices of size 2% x 2% . In the DNN ex-
ample, the blinded input size was 2%, and the network consisted
of two layers, each of size 2% X 2%, with a fixed output size of 20,
We evaluated all benchmarks with N € {12, 14, 16, 18, 20}.

The results in Figure 4 show the OISA benchmark run-time in
nanoseconds for different input sizes and three configurations: base-
line, with capability-enforcement disabled, purecap, which enforces
CHERI memory-safety only, and purecap + blinded, which enforces
all BLACKOUT invariants including CHERI memory-safety and data-
obliviousness. As our hardware modifications do not add additional
cycles to any instructions, all configurations can run with the same
FPGA bitstream, requiring only different compilation flags. The
baseline configuration uses CHERI’s “hybrid” mode which allows
CHERI-capable processors to run legacy, non-capability code.

The geometric mean overhead per benchmark is shown in Fig-
ure 4f. The overall result shows a minimal geometric mean overhead
of 1.5% for BLACKOUT compared to the purecap configuration, which
is several times lower than overheads for prior work enforcing data-
oblivious computation [30, 102]. The overhead in blinded workloads
is caused by several factors:

(1) Clearing blinded memory at the end of a blinded capability’s
lifecycle. This is done by the compiler for blinded memory on
the stack on function returns, and by the blinded_malloc for
blinded memory on the heap on freeing. For instance, when N =
20, binary search operates on a 4MiB array. In this setting, mem-
ory reclamation (zeroing) accounts for most of the overhead.

(2) Additional stores and loads to set the blindedness bit in registers.

When initializing blinded data at the start of the benchmarks,
any data in registers must be first stored into blinded memory
and then loaded back to set the register blindedness bit. This
only occurs for the initial blinded data and is not required to
propagate blindedness during execution. The effect on perfor-
mance is therefore minimal. Nevertheless, we discuss a potential
optimization to avoid this in §8.

Changes to instruction cache performance caused by the slight
increase in code size due to compiler instrumentation.

We also evaluate the combined performance impact of CHERI’s
memory-safety and BLACKOUT’s data-oblivious enforcement. We
measure a moderate geometric mean overhead of 23.5% compared to
the unprotected baseline configuration with capability-enforcement
completely disabled. We observe that the overhead for both CHERI’s
purecap and BLACKOUT’s purecap + blinded modes relative to the
unprotected baseline is significantly larger in the binary_search
benchmark, particularly for smaller input sizes, compared to the
other OISA benchmarks. We investigate further the composition of
the overhead in that benchmark. In consultation with the University
of Cambridge Computer Laboratory Security Group we identified
three possible reasons for the poor performance:

(1) Inefficiencies in CHERI-RISC-V’s relocation representation and

processing converting function pointers into capabilities.

(2) Lack of support for lazy binding of functions in CHERI-RISC-V
which manifests as high initial load times at startup.
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Figure 4: Run-time in seconds of the OISA binary_search (a), dnn (b),find_max (c), int_sort (d), and matrix_mult (e) benchmarks
built for the baseline with capability-enforcement disabled, purecap mode with CHERI memory-safety enforced but data-
obliviousness not enforced, and purecap+blinded mode with both CHERI memory-safety and data-obliviousness enforced.
Figure 4f shows the geometric mean overheads for each benchmark aggregated over all input sizes.
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Figure 5: Run-time in seconds of the OISA binary_search benchmark in dynamically-linked, statically-linked, and bare-metal
configurations for the baseline, purecap, and purecap+blinded modes. The geometric mean overhead of purecap+blinded
compared to baseline aggregated over all input sizes falls from 52.1% for the dynamically-linked configuration (a) to 32.0% for
the statically-linked one (b). The corresponding geometric mean is 9.1% for the baremetal configuration (c).

(3) The current version of CHERI-LLVM currently disables most include only the execution of the data-oblivious algorithm, elimi-
loop optimizations, making it slower for the type of code the nating the initial startup cost, reclaiming of memory, and system
binary_search benchmark relies on compared to compilation calls, thus isolating the computational cost of blinded capabilities
to a non-CHERI RISC-V target. without their impact on memory management.

To isolate the effect of these potential root causes for the over- Figure 5 shows the results of these additional binary_search
head that are independent of the BLACKOUT-related changes, we configurations and allows us to make the following observations:
repeat the binary_search benchmark in two additional configu- First, in the statically-linked benchmarks, the overhead for smaller
rations: a) a statically linked benchmark on CheriBSD designed input sizes improve, but the result for larger input sizes is similar
to mitigate the inefficiencies in relocation (1) and lazy binding to the dynamically-linked benchmarks, suggesting that the one-off
(2), and b) a bare-metal version of the benchmark that runs with- cost of initial load times is amortized over the longer benchmark

out CheriBSD. Crucially, the bare-metal benchmark measurements runs in both cases. Second, the overheads for both purecap and



purecap + blinded modes compared to the baseline are significantly
lower when run on baremetal. This supports our hypothesis that
relocation (1) and lack of lazy binding (2) are the main sources of
overhead for binary_search in Figure 4.

We also note some cases in the matrix_mult benchmark in

Figure 4e where the baseline performs slightly worse than the other
two. We examined the generated assembly for these benchmarks
and discovered that the CHERI-enabled compiler does a better job
at optimizing parts of the code whose effect on performance grows
with input size, leading to slightly lower run-times in the purecap
and purecap + blinded configurations.
SpectreGuard benchmarks. Third, we run the SpectreGuard [37]
synthetic benchmark using the version adapted by Daniel et al. [24]
to evaluate ProSpeCT (see §9). This version uses data-oblivious
implementations of the chacha20, sha2, and curve25519 crypto-
graphic algorithms from HACL*[107], a formally verified crypto-
graphic library written in F* [88]. The benchmarks represent a
workload consisting of public-data computations, which gain sub-
stantial performance from speculative execution, alongside encryp-
tion routines, which are less impacted by speculation. Each bench-
mark varies the proportion of speculative versus cryptographic
work (S/C), as shown in Table 4. The ProSpect benchmark version
already annotates all secret values in those test cases. We adapt
those annotations to blinded attributes and run all the test cases
on BLACKOUT CHERI-Toooba in both purecap and purecap + blinded
versions. Table 4 shows the results (average of 20 runs) for the
chacha20 and sha? test cases. Unlike for the OISA benchmark re-
sults, where BLACKOUT’s overhead could be attributed to zeroing
out stack and heap variables, the ProSpeCT version of the Spec-
treGuard benchmark places all secret variables in static variables
allocated from the program’s data section, similar to global vari-
ables. Consequently, BLACKOUT does not introduce any discernible
overhead for encryption time or workload time. The slight speed
improvement of the purecap + blinded version compared to the
purecap baseline in chacha20 255/7C and sha2 90S/10C falls within
standard deviation (maximum o = 0.08%). For completeness, we
also include results for nocap, which performs worse than purecap
in most cases. We attribute this difference to improvements in the
RISC-V backend for CHERI-RISC-V targets compared to plain RISC-
V targets in CHERI-LLVM, resulting in more compact and efficient
assembly. We confirmed this through manual investigation.

For the Curve25519 test case, we discovered a constant-time
violation caused by a secret-dependent branch instruction in the
compiled binary. Although this violation is not present in the for-
mally verified source code, it is introduced by the compiler, which
in our case is CHERI’s fork of Clang. This violation is not reported
in ProSpeCT’s evaluation because it uses the GCC compiler, which
likely correctly avoided generating such a secret-dependent branch.
This difference in generated assembly code highlights the useful-
ness of BLACKOUT: different compilers and/or configurations can
silently introduce constant-time violations which BLACKOUT can
detect and stop even if the source does not contain such a violation.

7.3 Security

Empirical Spectre mitigation evaluation. CHERI-Toooba is vul-
nerable to Spectre branch target buffer (BTB) [56], return stack
buffer (RSB) [57, 64] and store to load (STL) [46] (cf. test suite in

[35]). We blinded the secret value in all test cases by inserting a sin-
gle candperm instruction. As seen in Table 5, BLACKOUT prevents all
Spectre attacks from [35] because BLACKOUT catches side-channel
violations even during speculation, but suppresses faults until spec-
ulation is confirmed (and ignores them otherwise). Additionally,
we have replicated ProSpeCT’s [24] Spectre tests. However, as they
involve dereferencing a secret data value as a pointer, they are
inherently prevented by CHERI’s architectural security properties,
which preclude dereferencing non-capability data. Note that none
of the Spectre tests in [24, 35] use transient capability forgery, and
therefore do not require CSC to prevent.

Empirical non-interference evaluation. Data-oblivious soft-
ware inherently provides the non-interference property [97]. We
verify this empirically using the methodology from [11, 97, 98]: rele-
vant signal traces are extracted from the value change dump (VCD)
waveforms across different program runs to ensure that runs with
different secret data values produce identical signal traces. As in
prior work [97], we extract traces for signals that could leak secret
data through cache-timing (addresses of cache accesses), speculative
execution (branch predictor states), and port contention and instruc-
tion latencies (reorder buffer scheduling). As BLACKOUT enforces
data-oblivious processing of blinded data, we use the data-oblivious
binary_search program from [102] as a case study. We vary the
blinded data values between two runs of the program, and verify
that the extracted traces for the relevant signals are identical.
Theoretical security evaluation. Our security argument is com-
posed of three invariants:

(1) Standard CHERI-provided memory safety. This includes at-
tacks based on memory safety violations, such as out-of-bounds
access and use-after-free. We do not loosen any of the restric-
tions imposed by standard CHERI (such as proper capability
bounds and lifetime). We are therefore compliant with the stan-
dard CHERI model, and as such inherit its safety guarantees
against spatial and temporal memory violations. This extends to
the guarantees provided by formal models [28, 39, 75].

(2) Side-channel protection for blinded data. This is provided by
the enforcement of data-oblivious computation on blinded data
(I4 and I5). Any violation of this results in a fault, as explained
in §5. We inherit formal guarantees for this from the OISA and
BliMe models [30, 102]. We further show its efficacy empirically
by running the OISA benchmarks [102] using BLACKOUT and
verify that introducing non-data-oblivious changes to them is
either detected by our compiler or causes a run-time fault.

(3) Confidentiality of blinded data with respect to direct ac-
cess. While BliMe guarantees the confidentiality of blinded data
in memory using in-memory tags, we achieve the same goal
by ensuring that 1) blinded capabilities have exclusive access
to blinded data throughout their lifetime (I3), 2) memory con-
taining blinded data is cleared at the end of the corresponding
blinded capability’s lifetime (also I3), and 3) blinded data can-
not be stored to memory using unblinded capabilities (I1). The
resulting combination ensures that, as in OISA and BliMe, any
data stored as blinded into memory, is loaded as blinded into
registers. This holds until the data is explicitly declassified (§5).

8 Discussion & Limitations

Blinding existing variables and oblivious-data-race-safety.
As discussed in §5, BLACKOUT ensures that memory designated as



Table 4: SpectreGuard benchmark performance average measured over 20 runs of each test case (maximum o = 0.08%).

258/75C 508/50C 758/25C 90S/10C
Blinded CHERI-Toooba Total Ticks A (to row above)  Total Ticks A (to row above)  Total Ticks A (to row above) Total Ticks A (to row above)
chacha20
nocap 25860874 - 23132682 - 25417083 - 20661078 -
purecap 22546871 -3314003 (—12.81%) 20378637 -2754045 (—=11.91%) 25430015 12932 (0.05%) 20256607 -404472 (—1.96%)
purecap + blinded 22541024 -5847 (—0.03%) 20378935 298 (0.00%) 25434929 4914 (0.02%) 20256061 -546 (0.00%)
sha2
nocap 24819790 - 21595015 - 25417599 - 22163550 -
purecap 24771185  -48604 (—0.20%) 21591164 -3851 (=0.02%) 26342237 924638 (3.64%) 22378912 215362 (0.97%)
purecap + blinded 24771730 544 (0.00%) 21593499 2335 (0.01%) 26342910 672 (0.00%) 22371464 -7448 (—0.03%)

Table 5: Transient-execution attacks successfully prevented
on CHERI-Toooba and Blinded CHERI-Toooba. v indicates
the attack is successfully defended against, while X indicates
the attack succeeds.

Spectre variant
PHT BTB RSB STL

CHERI-Toooba v X X X
Blinded CHERI-Toooba v v v v

blinded—either annotated by the developer, or inferred as such by
the compiler—is blinded at allocation time. This ensures exclusive
access through corresponding blinded capabilities, satisfying invari-
ants I1 to I3 (§5). However, some correct data-oblivious programs
may initially allocate memory as non-blinded, only requiring it to be
blinded after interacting with other blinded data. While BLACKOUT
restricts this pattern, a less-restrictive variation could allow dynam-
ically blinding previously allocated memory. This would require
scanning program memory to revoke existing, non-blinded capa-
bilities referencing to-be-blinded memory, similar to revocation
strategies used by Cornucopia [94] and Cornucopia Reloaded [32].
The trade-off is increased performance overhead. Future work might
explore dynamic or delayed revocation strategies to reduce this
cost while ensuring eventual exclusive access.

Eventually, data-oblivious software must unblind memory af-
ter data-oblivious computation concludes and secret intermediates
are cleared (§5). In concurrent scenarios, shared blinded memory
may require revoking overlapping blinded capabilities to main-
tain temporal memory safety and prevent unauthorized reuse after
unblinding. Currently, BLACKOUT does not address this oblivious-
data-race-safety, leaving it as an open problem for future work.
Unblinding results through capability escrow. A solution for
further securing the unblinding of blinded memory containing
non-sensitive results is to leverage CHERI’s facilities for capability
sealing (§2.1). Sealed capabilities cannot be de-referenced and pro-
tect against tampering by fixing properties like permissions and
bounds; any attempt to tamper with the capability will result in
invalidating it. In this context, sealed capabilities enable a form of
“capability escrow”, where a non-blinded version of a blinded capa-
bility stored for safe-keeping until the data-oblivious operations
complete. Software can use a blinded capability to seal its non-
blinded counterpart, which cannot be de-referenced while sealed
and thus poses no threat to confidentiality. After data-oblivious
computation has completed, secret intermediate values are cleared,

and the blinded capability is used to unseal the non-blinded coun-
terpart, allowing access to the result. Designing software APIs for
capability escrow is left for future work.
Different techniques for developer annotations In BLACKOUT,
developers use __blinded annotations to indicate blinded variables
(§6.2). Compiler attributes are a common mechanism for conveying
semantic information without changing the underlying language.
BLACKOUT leverages Clang’s existing annotate_type mechanism,
available since LLVM 14, avoiding intrusive compiler changes.
However, this approach has limitations—annotating positional
parameters in functions can be cumbersome within the confines of
existing types of annotations. An alternative would be to introduce
a “blinded C” dialect that integrates blinding directly into the type
system, similar to the approaches discussed for Rust in § 1. For
example, a blinded keyword akin to const could be used to mark
variables as a blinded counterpart of their basic type. While this
would improve developer ergonomics and simplify function param-
eter annotations, it would require intrusive changes to the language
and compiler. This could hinder maintainability and extensibility,
especially for evolving platforms like CHERI.
Limitations of BRR structures for blinded data storage. While
blinded register record (BRR) structures effectively manage blinded
register spills by clearly identifying and restoring blinded values,
it is impractical to store all blinded data exclusively using BRR-
like structures. The principal reason is the substantial memory
overhead—BRR structures effectively double memory consumption.
Such overhead would significantly degrade system performance and
scalability, particularly for applications requiring large quantities
of blinded data. Therefore, BRR structures should remain reserved
for specific contexts, such as register spilling, while more efficient
blinded capabilities handle general blinded memory storage.
ISA extensions. As we note in §6.1, BLACKOUT, unlike previous
data-oblivious ISAs [30, 102], does not add any additional instruc-
tions to the underlying ISA but leverages existing CHERI functional-
ity with only small adjustments to its permission model to facilitate
necessary architectural changes to support blinded capabilities. Fu-
ture work can extend the ISA by adding dedicated instructions
to support blinded memory. A potential extension is an instruc-
tion to directly set the blindedness bit in a register without a load
via a blinded capability. This would allow the blinded capability-
enhanced compiler to optimize code where a certain variable can
be kept completely in a register throughout its lifetime. Currently,
BLACKOUT requires such variables to be allocated on the stack in
order to load them via the corresponding blinded capability.



Relevance for CHERI standarization. BLACKOUT demonstrates
a practical method for enhancing CHERI’s security model with-
out invasive architectural changes by integrating data-oblivious
computation capabilities into the existing CHERI protection model.
This integration provides insights into how capability-based archi-
tectures can evolve to support advanced security properties, such
as data-oblivious computation, while maintaining compatibility
and performance. Consequently, BLACKOUT’s principles and mech-
anisms can inform ongoing CHERI standardization efforts [17],
potentially guiding the evolution of CHERI-enabled architectures
towards broader security guarantees. Above, we discussed adding
custom instructions. But maintaining the CHERI ISA as we cur-
rently do in BLACKOUT provides backward-compatibility for non-
BLACKOUT hardware and can ease integration into the standard.
Relationship to non-interference. Since BLACKOUT builds on
BliMe, it also ensures (as shown in Section VI of [30]) the values of
blinded data have no effect on the rest of the system by 1) prevent-
ing blinded values from directly flowing to insecure instructions,
and 2) by ensuring no secret-dependent branches are allowed when
operating on blinded data, with an exception for controlled de-
classification as described above and in §5.2. Given its scope, we
conjecture that this guarantee satisfies the non-interference prop-
erty even though it was not explicitly discussed in [30]. Providing
a formal model for BLACKOUT itself and explicitly establishing non-
interference are left for future work. Nevertheless, we empirically
investigate non-interference for BLACKOUT in §7.3.

9 Related Work

Developing side-channel resistant software. Software that han-
dles sensitive data—such as cryptographic libraries or operating-
system kernels—must carefully avoid introducing side-channel leak-
age. Most code is not naturally resistant to such leaks as writing
constant-time code is often counterintuitive for programmers used
to optimizing for performance or resource efficiency [47]. Develop-
ment toolchains are not well suited for constant-time programming
for two main reasons: (1) optimizing compilers can break data-
obliviousness properties of high-level code [85], and (2) constant-
time libraries [1, 7, 55, 67] must balance security with the cost
of disabling optimizations, e.g., by implementing constant-time
functionality in architecture-specific inline assembly. A complete
solution would likely require invasive changes to the compiler in-
frastructure, such as extending LLVM’s type system to annotate
values needing timing protection and limiting optimizations on
them—at significant performance cost [67]. Some constant-time
Rust libraries avoid compiler optimization interference by imple-
menting all sensitive operations in inline assembly [55, 66], which
is opaque to LLVM’s optimization passes. However, this also pre-
vents the Rust compiler from verifying the code’s memory-safety
correctness and inhibits even simple optimizations such as constant
folding and algebraic simplification.

Verifying constant-time code. Researchers have explored various
methods for writing and verifying data-oblivious and constant-time
code [2,6,9,10,12, 21, 22, 29, 31, 33, 68, 69, 72, 80, 84, 87, 106], result-
ing in numerous tools offering informal [27, 59, 81, 93, 95, 96] and
formal [16, 23] guarantees. An actively maintained list of “constant-
timeness” verification tools (CT-tools) currently includes 55 such
tools [65]. However, both static analysis or formal methods face

signficant challenges. The principal shortcoming of static analy-
sis approaches is that data-obliviousness can only be defined at
machine-code level, rather than for high-level language constructs.
Capturing microarchitectural subtleties of real-world hardware in
formal models (and keeping the models up-to-date as hardware
evolves) is difficult. Static analyses may not be sound and can lead
to over- or under-tainting. Lastly, testing whether a program is data-
oblivious remains challenging as tools built on static and formal
analysis are typically not integrated into modern toolchains, have
significant technical limitations including high overheads to compi-
lation time, many false-positives, and are difficult to use [34, 40, 50].
In practice, constant-time coding practices alone are unreli-
able [79]. Compiler optimizations continue to evolve, and new
compilers emerge in unexpected contexts (e.g., in-silicon just-in-
time compilers in CPU hardware). Documentation gaps across the
software and hardware stack further hinder efforts, especially when
target platforms are not narrowly confined [78]. Thus, robust en-
forcement of data-obliviousness requires hardware/software code-
sign [29, 30, 61, 102]. Such designs allow programmers to annotate
sensitive data, enabling hardware to enforce protection against
side-channel leakage. Data-oblivious ISAs [30, 102], discussed in
§2.3, use hardware-based taint tracking to transform silent timing
side-channel leaks into explicit hardware faults. Yet, programming
for data-oblivious ISAs remains hard due to the lack of integrated
toolchain support for expressing such software/hardware contracts.
Architectural-Mimicry (AMi) [97] introduces new ISA primi-
tives for more efficient control-flow-linearization, addressing how
to make programs data-oblivious. AMi is complementary to data-
oblivious ISAs, which enforce data-obliviousness through ISA con-
tracts. However, it requires greater developer involvement as it
requires developer write assembly manually (with correct usage of
new primitives); incorrect usage can silently leak secrets.
BLACKOUT complements static-analysis and formal verification
approaches by bridging the gap between high-level verified data-
oblivious software and the low-level machine code. BLACKOUT en-
forces data-oblivious implementation through a hardware/software
co-design that integrates with mainstream toolchains. Unlike static
analysis tools, it provides hardware-enforced taint tracking, reliably
converting implicit timing leaks into explicit faults. By extending
the CHERI capability model with blinded capabilities, BLACKOUT
ensures both memory-safety and data-obliviousness without in-
vasive architectural changes. It simplifies secure programming by
modifying the CHERI Clang/LLVM compiler to infer when data-
oblivious invariants should be enforced. Thus, BLACKOUT simulta-
neously addresses usability, security, and performance challenges
that previous approaches tackled in isolation.
Securing speculation. Many hardware defenses adapt CPU mi-
croarchitectures to defend against Spectre and other speculative
execution side-channel attacks by isolating the microarchitectural
elements, such as cache hierarchies [3, 51, 52, 62, 82, 83, 89, 100, 105],
that can either influence speculation or leak data across security
domains. Speculative taint-tracking techniques[24, 37, 86, 103] de-
lay instructions dependent on speculatively loaded secret data. Of
recent work, ProSpeCT [24] formalizes the constant-time policy
with respect to control flow and memory accesses for a broad class
of speculation mechanisms. Its scope is guaranteeing that hardware
does not leak secrets of constant-time programs during speculation.



Unlike data-oblivious ISAs, neither ProSpeCT nor other transient
execution defenses enforce their guarantees on non-speculative
execution. As such, they do not help developers write constant-time
code. BLACKOUT prevents secret leakage even when programs are
not constant-time and helps developers refine annotations. Future
work can integrate formal approaches with BLACKOUT so that once
developers transform code, it can be guaranteed data-oblivious.

10 Conclusion

We introduced BLACKOUT, a novel approach that integrates data-
oblivious computation into the CHERI capability-based security
model. Future research will focus on optimizing performance of
reclaiming blinded memory, exploring dynamic revocation tech-
niques, and bringing these into CHERI standardization efforts.
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