
Do we still need canaries in the coal mine? Measuring
shadow stack effectiveness in countering stack smashing

Hugo Depuydt1, Merve Gülmez2, Thomas Nyman3, and Jan Tobias Mühlberg4

1 ENS Rennes, France hugo.depuydt@ens-rennes.fr
2 Ericsson Security Research, Sweden merve.gulmez@ericsson.com
3 Ericsson Product Security, Sweden thomas.nyman@ericsson.com

4 Université Libre de Bruxelles, Belgium jan.tobias.muehlberg@ulb.be

Abstract Stack canaries and shadow stacks are widely deployed mitigations
to memory-safety vulnerabilities. While stack canaries are introduced by the
compiler and rely on sentinel values placed between variables and control data,
shadow stack implementations protect return addresses explicitly and rely on
hardware features available in modern processor designs for efficiency. In this
paper we investigate whether stack canaries and shadow stacks provide similar
levels of protections against sequential stack-based overflows. Based on the Juliet
test suite, we evaluate whether 64-bit x86 (x86-64) systems benefit from enabling
stack canaries in addition to the x86-64 shadow stack enforcement. We observe
divergence in overflow detection rates between the GCC and Clang compilers
and across optimization levels, which we attribute to differences in stack layouts
generated by the compilers. We also find that x86-64 shadow stack implemen-
tations are more effective and outperform stack canaries when combined with a
stack-protector-like stack layout. We implement and evaluate an enhancement to
the Clang x86-64 shadow stack instrumentation that improves the shadow stack
detection accuracy based on this observation.

1 Introduction

The urgency of mitigating memory-safety vulnerabilities in C and C++ software has
grown under increasing regulatory scrutiny [25]. Memory-safety issues are one of the
oldest problems in computer security and remain a persistent challenge despite decades
of advances in both offensive and defensive techniques [29]. Stack canaries [12] stand
out as one of the earliest systematic mitigations to achieve widespread adoption. In
this paper, we reassess stack canaries in light of modern hardware-assisted mitigations,
particularly shadow stacks [8], now operational in commodity x86-64 systems [21,22].

Stack canaries—a reference to the historic practice of bringing canary birds into
coal mines to alert miners of toxic gases—are sentinel values placed between local
variables and control data on the stack to detect buffer overflows. Shadow stacks, in con-
trast, specifically protect function return addresses, preventing exploits such as return-
oriented programming (ROP) [27] that hijack a program’s control flow. While shadow
stacks target a different threat model, both techniques defend against sequential over-
flows that corrupt the stack canary or return address. We hypothesize that, with modern
compiler optimizations omitting other control data from stack frames, stack canaries
and shadow stacks offer comparable protection against sequential overflows.



2 Depuydt et al.

This paper and contributions. This paper investigates whether conventional stack ca-
naries are redundant in applications where hardware-assisted shadow stacks are en-
abled. We evaluate the effectiveness of both techniques on modern x86-64 systems
using the NIST Juliet C/C++ Test Suite [7] which contains a wide range of C/C++
code examples with buffer-overflows among the 118 Common Weakness Enumeration
(CWE) categories the suite covers. Our key contributions and findings include:

1. Systematic evaluation between GCC and Clang. We evaluate the effectiveness
and performance of stack canaries and x86-64 shadow stack in GCC and Clang and
show differences in the detection accuracy between the compilers. Across our sam-
ple set, Clang demonstrates a better detection rate with stack canaries than GCC,
while shadow stacks alone detect significantly fewer buffer overflows compared to
stack canaries. We further investigate the reasons for this difference.

2. Impact of compiler stack layouts. The stack layout generated by the compiler has
a significant impact on detection accuracy for both stack canaries and shadow stack.
The stack layout varies between the different compilers, the level of program opti-
mizations used, and between different variants of the stack-canary instrumentation,
i.e., the different option variants in the -fstack-protector family.

3. Enhancements to Clang’s shadow stack support. To enhance the protection the
x86-64 shadow stack offers against sequential buffer overflows, we propose new
Clang compiler options that emulate stack-protector layouts while relying on shadow
stack checks. Our evaluation shows these new options improve detection accuracy
while allowing stack canary checks to be omitted and incur only a small per-
formance degradation (≈ 1.6% and ≈ 0.4% on the SPEC CPU 2017 intrate and
intspeed test suites respectively) which is lower than that of the corresponding stack
canaries (≈ 3% and ≈ 3.3%, when applied to all functions) and comparable to that
of conventional x86-64 shadow stacks (≈ 1.5% and ≈ 0.6%).

Our observations have already been shared with security researchers in the GCC
and Clang communities, with whom we confirmed that our findings can be disclosed
and that the compiler features are working as intended. An extended version of this
paper with additional technical details is available as [14].

2 Background

Over half a century since their discovery [2], memory-safety vulnerabilities have be-
come the most prevalent class of software vulnerability [25]. Major software manufac-
turers, such as Microsoft and Google [16], attribute up to 70% of vulnerabilities dis-
covered in their products to memory-safety issues [24,16]. Examples of vulnerabilities,
attacks, and outages attributed to memory-safety issues include the Heartbleed bug in
OpenSSL [28], the BLASTPASS exploit chain used to deliver commercial spyware [9],
and the CrowdStrike outage of 2024 [13].

2.1 Stack canaries

As exploitation techniques for memory-safety vulnerabilities such as buffers overflows
became prevalent, research into countermeasures resulted in several mitigation schemes



Measuring shadow stack effectiveness in countering stack smashing 3

of which stack canaries were eventually integrated into mainstream compilers [31,17].
Stack canaries detect a stack buffer overflow before the execution of malicious code can
occur: A function’s stack layout is instrumented with canary values between local vari-
ables and the return address. A contiguous buffer overflow modifies the stack canary
before corrupting the return address. A check inserted by the compiler before return-
ing from a function detects if the canary has been modified and calls an error-handling
routine, __stack_chk_fail(), that typically terminates the program, rather than re-
turning with a corrupt return address. On x86-64 Linux with the GNU C library (glibc),
the stack canary is a 64-bit random value with the final bytes zeroed to make it simul-
taneously act as a terminator canary. A survey of deployed compiler-based mitigations
indicates that stack canaries are enabled in 85% of desktop binaries [32].

Allocation placement. The placement of allocations in the stack frame relative to the
stack canary and saved register values in the frame record is significant for the overflow
detection efficacy of stack canaries. Both GCC and Clang use the following rules when
deciding allocation placement for local variables with stack protector [23]:

– Large arrays and structures containing large arrays are nearest to the canary.
– Small arrays and structures containing small arrays are next nearest to the canary.
– Variables that have had their address taken are third nearest to the canary.
– Other variables whose sizes are known at compile time are further.
– Dynamically-sized variables, such as C99-style arrays, are the furthest.

Jiang et al. [20] observe that GCC and Clang can generate different layouts for al-
location placement even when the stack protector feature is enabled and identify one
instance in the RecIPE memory error defense benchmark where the differences in the
relative placement of an allocations between GCC and Clang result in different out-
comes in a benchmark test case.

2.2 Shadow stacks

A shadow stack [8] is a mechanism to protect a function’s stored return address while
it resides on the call stack. To achieve this, a copy of the return address is stored in a
separate, isolated region of memory area that is not accessible to the attacker. Before
the function returns, its stored return address is compared against the protected copy on
the shadow stack to ensure the original address has not been modified, for example as a
result of a buffer overflow. If there is a mismatch between the return address on the call
stack and its copy on the shadow stack, program execution is terminated.

By protecting the integrity of return addresses, shadow stacks ensure that return-
ing from function calls leads back to the respective call site, a form of backward-edge
Control-Flow Integrity (CFI) [1]. Attacks that violate CFI have been demonstrated at
different levels of semantic granularity, across programming languages, and in the pres-
ence of defensive mechanisms [6,26,5,19,15,4]. The prevalence of ROP, in particular,
have prompted processor manufacturers to incorporate hardware support for shadows
stacks into all major processor architectures including x86-64 [10], AArch64 [11], and



4 Depuydt et al.

RISC-V [30]. On x86-64 hardware shadow-stack support is provided by Intel’s Control-
flow Enforcement Technology (CET) as well as AMD’s Shadow Stack hardware fea-
tures. At the time of writing, recent releases of commodity Linux distributions, such as
Ubuntu 18.04 ship with the necessary software support for x86-64 shadow stacks, but
software built with shadow stack support (-fcf-protection=return in GCC 8.0.1
and Clang 7.0.0 and later) must explicitly opt-in to shadow stack enforcement.

Comparison of stack canaries and x86-64 shadow stack. Table 1 shows a high-
level comparison between stack canaries and the x86-64 shadow stack. The x86-64
shadow stack operates as a mechanism similar to stack canaries to protect the return
address. However, due to its placement, the x86-64 shadow stack cannot protect the
frame pointer, whereas stack canaries detect the corruption of the frame pointer and the
return address. Stack canaries rely on heuristics to determine which functions receive
the canary instrumentation based on the option shown in Table 1 (with the exception of
-fstack-protector-all which applies to all functions). The x86-64 shadow stack
applies implicitly to all functions. Stack canaries will detect any contiguous stack buffer
overflows that overwrite the canary value. The canary check can be bypassed if the ca-
nary value becomes known to an adversary who can overflow the buffer and overwrite
the canary with its original value, or if the buffer overflow is not contiguous the ad-
versary can “skip” over the canary without overwriting it. The x86-64 shadow stack,
in contrast, can prevent the replacement of the stored return address with arbitrary, or
mismatched return addresses regardless of which kind of write primitive is used to ma-
nipulate the contents of the call stack.

Table 1: Comparison between stack canaries and the x86-64 shadow stack

Compiler option
Protection of frame record Characteristics

Frame
pointer

Return
address

Protection
coverage

Enforcement
model

Stack Canaries
-fstack-protector ✓ ✓ Heuristic1 Probabilistic
-fstack-protector-strong ✓ ✓ Heuristic2 Probabilistic
-fstack-protector-all ✓ ✓ All functions Probabilistic

Shadow stack
-fcf-protection=return ✗ ✓ All functions Deterministic

1 : -fstack-protector applies stack canaries to any function with character arrays that equal
or exceed the ssp-buffer-size setting set via —-param=ssp-buffer-size (8 by default).

2 : -fstack-protector-strong applies stack canaries to any function that 1) takes the ad-
dress of any of its local variables on the right-hand-side of an assignment or as part of a
function argument, or 2) allocates a local array, or a struct or union which contains an array,
regardless of the type of length of the array, or 3) has explicit local register variables.



Measuring shadow stack effectiveness in countering stack smashing 5

3 Methodology

An often overlooked problem in validating compiler-based hardening features is test
coverage and assurance of correctness. In normal application development, the code-
base is finite and known; developers focus on ensuring that all code paths within their
application are tested and function correctly. A compiler, in contrast, is used by count-
less developers to build a variety of applications. In reality, most security hardening
features are tested by just a small number of regression or unit tests [3]. Even widely
deployed features, such as stack canaries, can exhibit gaps that affect their effective-
ness [18] as applying them to large amounts of code successfully does not necessar-
ily establish their effectiveness; it just demonstrates the feature does not interfere with
the normal operation of the code. To evaluate effectiveness, a common approach is to
use vulnerable programs, i.e., known Common Vulnerability Enumerations (CVEs).
However, CVE-based evaluation is limited both in scope, granularity, and scalability
as proof-of-concept exploits are available for relatively few CVEs. A more systematic
approach is to use a benchmark suite such as Juliet [7]. Previous work by Jiang et
al. [20] focuses on evaluating different defenses across different types of memory lo-
cations, rather than over varying stack layouts and omit the x86-64 shadow stack from
their evaluation. To the best of a knowledge, no prior work has attempted to perform a
quantitative comparison of stack canaries and the x86-64 shadow stack.

3.1 Goal and problem statement

The goal of our evaluation is to answer the following research questions:

RQ1. Are the detection rates of stack canaries and the x86-64 shadow stack consistent
across different compilers in large-scale tests.

RQ2. Is the detection rate of contiguous, stack-based buffer overflows comparable be-
tween the x86-64 shadow stack stack canaries.

RQ3. Is the impact on software performance in real-world use cases comparable between
the x86-64 shadow stack and stack canaries.

Finally, since it is known that the efficacy of stack canaries is affected by the relative
placement of a function’s allocations on the call stack (see Section 2.1) we evaluate the
impact of similar placement heuristics applied for stack canaries on the detection rate
of the x86-64 shadow stack:

RQ4. Is the detection rate of the x86-64 shadow stack improved by a -fstack-protector-
like stack frame layout?

Measuring detection rate. To evaluate RQ1 and RQ2, we use the Juliet test suite [7].
It is a collection of C/C++, C#, and Java programs with known defects organized by
the corresponding CWE categories. The latest version released in 2017 covers 64099
C/C++ cases, 28942 C# cases, and 28,881 Java cases. Although the test cases in the
Juliet suite are artificial, the defects in it are sourced from real-world applications, in-
cluding known CVEs. That said, using Juliet for run-time evaluation, rather than the



6 Depuydt et al.

Table 2: Relevant CWE categories in Juliet C/C++ version 1.3.

CWE Category # Test Cases

Total Excluded Selected Detectable

CWE121 Stack-Based Buffer Overflow 4944 96 4848 3562
CWE122 Heap-Based Buffer Overflow 5922 192 5730 1426
CWE124 Buffer Underwrite 2048 96 1952 604
CWE194 Unexpected Sign Extension 1152 384 768 192
CWE195 Signed-to-Unsigned Conversion Error 1152 384 768 288

static analysis it was designed for, comes with a number of challenges. In this work, we
focus on evaluating the difference of detection rate in RQ1 and RQ2. As such, the results
in Section 4.1 should not be taken as indicative of the security of the schemes evaluated,
merely as indications of their parity under conditions causing contiguous overflow.

Test case selection. Not all of the 118 CWE categories covered by the Juliet test suite
exhibit buffer overflow defects. To keep the compilation and run-time of tests man-
ageable, we had to narrow down the subset of test cases to evaluate those that exhibit
contiguous buffer overflow behavior. Through empirical assessment, we narrow our
evaluation to the five CWE categories in Table 2 which exhibit relevant defects.

Measuring performance impact. To evaluate RQ3, we use the SPEC CPU 2017
benchmark suite and report the results in Section 4.2, using -O2 -march=native for
all cases, with 4 copies for rate tests, and 12 threads for speed tests, corresponding to the
number of cores without simultaneous multithreading (SMT). SMT and address space
layout randomization (ASLR) were disabled for all tests.

Measuring impact of allocation layout. To evaluate RQ4 we implemented a mod-
ification to the Clang compiler that applies the stack layout changes implied by the
-fstack-protector family of options without enabling the stack canary instrumen-
tation and checks. To achieve this, we reuse the analysis passes that the stack canary
instrumentation uses, but remove the generation of the failure path, check, and stack
canary allocation. These changes result in a -fstack-layout -family of options that
make local allocations ordered by the rules described in Section 2.1, with large arrays
and structures containing large arrays closer to the return address than small arrays and
variables. We then evaluate x86-64 shadow stack detection accuracy when combined
with the new -fstack-layout -family of options and report our results in Section 4.1.

3.2 Experimental setup

We opted to use a source-based Linux distribution, Gentoo Linux, to ensure that the test
cases and all dependencies were built with stack canary and x86-64 shadow stack op-
tions and the correct compiler. We used GCC 13.3.1_p20240614 p1 and Clang version



Measuring shadow stack effectiveness in countering stack smashing 7

18.1.8 along with Gentoo’s glibc 2.39-r6, on Gentoo’s Linux Kernel version 6.6.51-
gentoo-dist-hardened. Experiments executed on an Intel NUC 13 Pro Mini (NUC13ANK)
with a Raptor Lake Intel Core™ i7-1360P and 14 GB random access memory (RAM).

4 Evaluation and Results

4.1 Results: Detection of Contiguous Overflows

Figure 1 illustrates the stack canary and shadow stack results for GCC and Clang under
the optimization levels –O2 and –O0. All test cases show better detection rates with
–O0 compared to –O2, as optimizations under –O2 can exploit undefined behavior in
test cases in ways which may suppress or contain the extent of buffer overflows. For
example, in some CWE122 and CWE194 cases the offending buffers are not referenced
by the test code after the initialization that overflows them, allowing the compiler to
optimize away the entire array access as dead code. Overall, across all our tests, the
combination of the x86-64 shadow stack and either –fstack-protector-strong or
–fstack-protector-all using Clang at –O0 has the highest detection rate, but only
reaches ≈ 33% detection of the selected cases in Table 2. Consequently, for comparison,
it is more meaningful to compare the detection rates within a certain optimization level
than the rates across optimization levels.

Stack canary detection rates. An overall comparison of the plots in Figure 1 re-
veals that Clang demonstrates better detection rate with stack canaries than GCC. The –
fstack-protector-all and –fstack-protector-strong options consistently out-
perform the –fstack-protector option, which is expected. The –fstack-protector
-all option does not perform significantly better than –fstack-protector-strong.
We attribute the differences in detection results between GCC and Clang as follows:

Differences in stack layout between compilers: In GCC, an array may be placed before
another array, while in Clang, the same array may be placed after. This difference in
stack layout can result in arrays being positioned closer to the stack canary and return
addresses, depending on the compiler. While [20] initially highlighted this variation be-
tween compiler stack-layout, our results offer a more quantitative analysis of its impact.

Differences in handling of alloca() calls with constant values: Clang treats alloca
calls with constant values similarly to a local array declaration, optimizing the allo-
cation accordingly. In contrast, GCC employs a dynamic implementation, which may
allocate additional space, particularly at the –O0 optimization level. This behavior can
allow a buffer to overflow with a specific length without modifying the stack canary.



8 Depuydt et al.

0% 5% 10%

15%

20%

25%

30%

35%

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

stack
canaries

G
C

C
 -O

0

x86-64
SH

STK
stack

canaries
C

lang -O
0

x86-64
SH

STK
x86-64 SH

STK
w

ith canary layout
C

lang -O
0

stack
canaries

G
C

C
 -O

2

x86-64
SH

STK
stack

canaries
C

lang -O
2

x86-64
SH

STK
x86-64 SH

STK
w

ith canary layout
C

lang -O
2

stack canary options disabled (-fno-stack-protector)
stack canaries with ssp-buffer-size=4 (-fstack-protector --param

=ssp-buffer-size=4)
stack canaries with ssp-buffer-size=8 (-fstack-protector --param

=ssp-buffer-size=8)
stack canaries in all functions (-fstack-protector-all)
stack canaries with "strong" heuristic (-fstack-protector-strong)

x86-64 shadow stack
x86-64 shadow stack with stack canary layout and ssp-buffer-size=4 (-fstack-layout --param

=ssp-buffer-size=4)
x86-64 shadow stack with stack canary layout and ssp-buffer-size=8 (-fstack-layout --param

=ssp-buffer-size=8)
x86-64 shadow stack with stack canary layout in all functions (-fstack-layout-all)
x86-64 shadow stack with stack canary layout using "strong" heuristic (-fstack-layout-strong)

Figure
1:C

om
parison

ofJuliettestresultsby
com

piler,optim
ization

level,and
options.T

he
stack

canariesbarsshow
the

detection
ratesfor

differentstack
canary

options
(indicated

in
the

legend)w
ith

the
x86-64

shadow
stack

disabled.T
he

x86-64
SH

STK
bars

show
the

detection
rate

forthe
x86-64

shadow
stack

separately,and
w

hen
com

bined
w

ith
differentstack

canary
options

(indicated
in

the
legend).T

he
x86-64

SH
STK

w
ith

canary
layoutbars

show
the

detection
rate

forthe
x86-64

shadow
stack

w
hen

com
bined

w
ith

the
proof-of-concept

-
f
s
t
a
c
k
-

l
a
y
o
u
t-fam

ily
options

forC
lang
-
O
0

and
-
O
2

configurations.T
he

leftaxis
show

s
the

num
beroftestcases

w
ith

detections,w
hile

the
right

axis
show

s
the

percentage
ofdetected

cases
relative

to
the

Selected
testcases

show
n

in
Table

2.



Measuring shadow stack effectiveness in countering stack smashing 9

Table 3: Geometric mean of performance degradation based on SPEC CPU 2017 results.
Protection variant intrate intspeed

stack canaries with “strong” heuristic (-fstack-protector-strong) 0.55% 0.27%
stack canaries in all functions (-fstack-protector-all) 3.05% 3.26%
x86-64 shadow stack 1.48% 0.57%
x86-64 shadow stack with stack canary layout using “strong” heuristic (-fstack-layout-strong) 1.55% 0.40%
x86-64 shadow stack with stack canary layout in all functions (-fstack-layout-all) 1.60% 0.41%

x86-64 shadow stack detection rates. When the x86-64 shadow stack is enabled with-
out stack canaries present, its detection rates exceeds those of stack canaries in the –O2
case for both GCC and Clang, but the –O0 results are reversed with the best performing
stack canary options (-fstack-protector-all and -fstack-protector-strong)
detecting more overflows than the x86-64 shadow stack for both GCC and Clang. Con-
sidering all compilation options, there are 1217 tests that the x86-64 shadow stack de-
tects successfully that stack canaries do not, and 163 tests that stack canaries detect that
the x86-64 shadow stack does not.

x86-64 shadow stack with -fstack-layout detection rates. The results for Clang
with –O0 and –O2 are shown in Figure 1. They show a consistent improvement in x86-
64 shadow stack detection accuracy when combined with the new options. We how-
ever, identified a specific limitation in our approach of reusing the existing -fstack-
protector analysis passes: in some cases, such as when a function spills callee-saved
registers the stack canary is not placed right next to the return address, but also in such
a way to protect any spilled register values. Our -fstack-layout options do not alter
the placement of spilled registers leaving them unprotected by the x86-64 shadow stack.

4.2 Results: Performance

We evaluate the performance impact of different stack canary implementations and
the x86-64 shadow stack using the SPEC CPU 2017 intrate and intspeed benchmarks.
For the performance evaluation we focus on the -fstack-protector-strong and -
fstack-protector-all options as these outperformed the other -fstack-protector
variants in the detection of contiguous overflows experiments (Section 4.1). To improve
the consistency of results, we disabled ASLR and SMT. All benchmarks were compiled
using Clang compiler with optimization level –O2 and -march=native. We exclude the
548.exchange2_r benchmark as it is written in Fortran and not supported by Clang.

Table 3 gives an overview of the performance results. Overall we found that the
-fstack-protector-strong options degraded performance the least (on average
≈ 0.55% on intrate and ≈ 0.27% on intspeed) and -fstack-protector-all the most
(on average ≈ 3.05% on rate and ≈ 3.26% on speed). The x86-64 shadow stack falls
between these stack canary variants by degrading performance on average by ≈ 1.48%
on intrate and ≈ 0.57% on intspeed. The x86-64 shadow stack with -fstack-layout-
strong and -fstack-layout-all seems to have comparable performance to that of
the conventional x86-64 shadow stack.



10 Depuydt et al.

4.3 Conclusions from Evaluation

In Section 3 we set out to answer four research questions. Our conclusions regarding
these questions and based on the above evaluation of detection and performance is:

RQ1. Are the detection rates of stack canaries and the x86-64 shadow stack consistent
across different compilers in large-scale tests.
No ✗: Our results show that different options exhibit different detection rates
across compilers.

RQ2. Is the detection rate of contiguous, stack-based buffer overflows comparable be-
tween the x86-64 shadow stack stack canaries.
No ✗: The x86-64 shadow stack does not consistently outperform stack ca-
naries in terms of detection rates.

RQ3. Is the impact on software performance in real-world use cases comparable between
the x86-64 shadow stack and stack canaries.
No ✗: We measured consistently larger performance impacts for the x86-64
shadow stack compared to -fstack-protector-strong in our benchmarks.

RQ4. Is the detection rate of the x86-64 shadow stack improved by a -fstack-protector-
like stack frame layout?
Yes ✓: We measured a consistent improvement in detection rate for the x86-64
shadow stack with our -fstack-layout-family of options.

5 Conclusion

We compared stack canaries and the x86-64 shadow stack for detecting contiguous
overflows and return-address corruption across GCC and Clang at optimization levels
–O0 and –O2, using the Juliet test suite and SPEC CPU 2017 benchmarks. Clang’s stack
canaries consistently outperformed GCC’s, and both compilers detected more issues at
–O0 than at –O2. At –O2, the shadow stack caught more overflows than canaries—-with
Clang again ahead of GCC-—and by adopting Clang’s canary-style stack layout (but
without canary checks) we raised the shadow stack’s detection rate well above standard
canaries, at negligible runtime cost.

These findings suggest that, on supported hardware, a shadow-stack configuration
could replace stack canaries, despite its return addresses being more predictable than
random canary values. However, because the Juliet suite does not model real-world
exploits—-and GCC’s lower detection may stem from either a more efficient stack lay-
out or biases in the test suite—-we acknowledge that our evaluation does not enable
us to make strong claims regarding the security of the different configurations. We also
show that stack-protector implementations influence code generation and stack order-
ing beyond inserting canaries, and recommend that similar layout effects be evaluated
for other mechanisms, such as ARM Pointer Authentication.

Acknowledgements

We want to thank Kristof Beyls, William Huhn, Siddhesh Poyarekar and Niklas Lind-
skog for reviewing an earlier version of this paper. This research is partially funded by
the CyberExcellence programme of the Walloon Region, Belgium (grant 2110186).



Measuring shadow stack effectiveness in countering stack smashing 11

References

1. Abadi, M. et al.: Control-flow integrity. In: CCS ’05 (2005). https://doi.org/10.1145/1102120.1102165
2. Anderson, J.P.: Computer Security Technology Planning Study Volume 1 - Executive Summary. Tech. Rep. AD-758

206, James P. Anderson and Co. (Oct 1972), https://apps.dtic.mil/sti/citations/AD0758206
3. Beyls, K.: [RFC] BOLT-based binary analysis tool to verify correctness of security hardening. LLVM Discussion

Forums (Apr 2024), https://discourse.llvm.org/t/78148
4. Bierbaumer, B. et al.: Smashing the Stack Protector for Fun and Profit. In: Janczewski, L.J., Kutyłowski, M. (eds.) ICT

Systems Security and Privacy Protection, SEC ’18, vol. 529, pp. 293–306. Springer International Publishing (2018).
https://doi.org/10.1007/978-3-319-99828-2_21

5. Bittau, A. et al.: Hacking Blind. In: S&P ’14 (2014). https://doi.org/10.1109/SP.2014.22
6. Bletsch, T. et al.: Jump-oriented programming: A new class of code-reuse attack. In: ASIACCS ’11 (2011). https:
//doi.org/10.1145/1966913.1966919

7. Boland, T., Black, P.E.: Juliet 1.1 C/C++ and Java Test Suite. Computer 45(10), 88–90 (Oct 2012). https://doi.
org/10.1109/MC.2012.345

8. Burow, N., Zhang, X., Payer, M.: SoK: Shining Light on Shadow Stacks. In: S&P ’19 (2019). https://doi.org/10.
1109/SP.2019.00076

9. Citizen Lab: BLASTPASS: NSO Group iPhone Zero-Click, Zero-Day Exploit Captured in the Wild. Tech. rep., Citizen
Lab, University of Toronto (Sep 2023), https://citizenlab.ca/2023/09/blastpass-nso-group-iphone-
zero-click-zero-day-exploit-captured-in-the-wild/

10. Corbet, J.: Shadow stacks for user space. LWN.net (Feb 2022), https://lwn.net/Articles/885220/
11. Corbet, J.: Shadow stacks for 64-bit Arm systems. LWN.net (Aug 2023), https://lwn.net/Articles/940403/
12. Cowan, C. et al.: StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks.

In: USENIX Security ’98 (1998), https://www.usenix.org/legacy/publications/library/proceedings/
sec98/cowan.html

13. CrowdStrike: External Technical Root Cause Analysis — Channel File 291. Tech. rep. (Aug 2024),
https://www.crowdstrike.com/wp-content/uploads/2024/08/Channel-File-291-Incident-Root-
Cause-Analysis-08.06.2024.pdf

14. Depuydt, H. et al.: Do we still need canaries in the coal mine? measuring shadow stack effectiveness in countering
stack smashing (extended version) (2024), https://doi.org/10.48550/arXiv.2412.16343

15. Evans, I. et al.: Control Jujutsu: On the Weaknesses of Fine-Grained Control Flow Integrity. In: CCS ’15 (2015).
https://doi.org/10.1145/2810103.2813646

16. Google: An update on Memory Safety in Chrome. Google Security Blog (Sep 2021), https://security.
googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html

17. Guelton, S., Poyarekar, S.: Use compiler flags for stack protection in GCC and Clang. Red Hat Developer
Blog (May 2022), https://developers.redhat.com/articles/2022/06/02/use-compiler-flags-stack-
protection-gcc-and-clang#

18. Hebb, T.: CVE-2023-4039: GCC’s -fstack-protector fails to guard dynamic stack allocations on ARM64. Meta Red
Team X Blog (Sep 2023), https://rtx.meta.security/mitigation/2023/09/12/CVE-2023-4039.html

19. Hu, H. et al.: Data-Oriented Programming: On the Expressiveness of Non-control Data Attacks. In: S&P ’16 (2016).
https://doi.org/10.1109/SP.2016.62

20. Jiang, Y. et al.: RecIPE: Revisiting the Evaluation of Memory Error Defenses. In: ASIACCS ’22 (2022). https:
//doi.org/10.1145/3488932.3524127

21. Larabel, M.: Intel Shadow Stack Finally Merged For Linux 6.6. Phoronix (Aug 2023), https://www.phoronix.com/
news/Intel-Shadow-Stack-Linux-6.6

22. Larabel, M.: Glibc Updated For Recent Linux CET Shadow Stack Support. Phoronix (Jan 2024), https://www.
phoronix.com/news/Glibc-Intel-CET-Shadow-Stack

23. Magee, J.: [cfe-dev] What do the different stack-protector levels protect in Clang? (Apr 2017), https://lists.llvm.
org/pipermail/cfe-dev/2017-April/053662.html

24. MSRC: A proactive approach to more secure code. Microsoft Security Response Center Blog (Jul 2019), https:
//msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

25. ONCD: Back to the Building Blocks: A Path Toward Secure and Measurable Software. Whitepaper, United States
White House Office of the National Cyber Director (2024), https://bidenwhitehouse.archives.gov/wp-
content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

26. Roemer, R. et al.: Return-Oriented Programming: Systems, Languages, and Applications. ACM Trans. Inf. Syst. Secur.
15(1), 2:1–2:34 (Mar 2012). https://doi.org/10.1145/2133375.2133377

27. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without function calls (on the x86). In:
CCS ’07 (2007). https://doi.org/10.1145/1315245.1315313

28. Synopsys: Heartbleed Bug (Apr 2014), https://heartbleed.com/
29. Szekeres, L. et al.: SoK: Eternal War in Memory. In: S&P ’13 (2013). https://doi.org/10.1109/SP.2013.13
30. Traynor, B.: The RISC-V Instruction Set Manual Volume I: Unprivileged Architecture, Chapter 35. Control-

flow Integrity (CFI) (Nov 2024), https://github.com/riscv/riscv-isa-manual/releases/tag/riscv-
isa-release-ade2bfb-2024-11-28

31. Whitney, T.: /GS (Buffer Security Check). Microsoft Learn (Mar 2021), https://learn.microsoft.com/en-us/
cpp/build/reference/gs-buffer-security-check?view=msvc-170

32. Yu, R. et al.: Building Embedded Systems Like It’s 1996. In: NDSS ’22 (2022). https://doi.org/10.14722/ndss.
2022.24031

https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1102120.1102165
https://apps.dtic.mil/sti/citations/AD0758206
https://discourse.llvm.org/t/78148
https://doi.org/10.1007/978-3-319-99828-2_21
https://doi.org/10.1007/978-3-319-99828-2_21
https://doi.org/10.1109/SP.2014.22
https://doi.org/10.1109/SP.2014.22
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1109/MC.2012.345
https://doi.org/10.1109/MC.2012.345
https://doi.org/10.1109/MC.2012.345
https://doi.org/10.1109/MC.2012.345
https://doi.org/10.1109/SP.2019.00076
https://doi.org/10.1109/SP.2019.00076
https://doi.org/10.1109/SP.2019.00076
https://doi.org/10.1109/SP.2019.00076
https://citizenlab.ca/2023/09/blastpass-nso-group-iphone-zero-click-zero-day-exploit-captured-in-the-wild/
https://citizenlab.ca/2023/09/blastpass-nso-group-iphone-zero-click-zero-day-exploit-captured-in-the-wild/
https://lwn.net/Articles/885220/
https://lwn.net/Articles/940403/
https://www.usenix.org/legacy/publications/library/proceedings/sec98/cowan.html
https://www.usenix.org/legacy/publications/library/proceedings/sec98/cowan.html
https://www.crowdstrike.com/wp-content/uploads/2024/08/Channel-File-291-Incident-Root-Cause-Analysis-08.06.2024.pdf
https://www.crowdstrike.com/wp-content/uploads/2024/08/Channel-File-291-Incident-Root-Cause-Analysis-08.06.2024.pdf
https://doi.org/10.48550/arXiv.2412.16343
https://doi.org/10.1145/2810103.2813646
https://doi.org/10.1145/2810103.2813646
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://developers.redhat.com/articles/2022/06/02/use-compiler-flags-stack-protection-gcc-and-clang#
https://developers.redhat.com/articles/2022/06/02/use-compiler-flags-stack-protection-gcc-and-clang#
https://rtx.meta.security/mitigation/2023/09/12/CVE-2023-4039.html
https://doi.org/10.1109/SP.2016.62
https://doi.org/10.1109/SP.2016.62
https://doi.org/10.1145/3488932.3524127
https://doi.org/10.1145/3488932.3524127
https://doi.org/10.1145/3488932.3524127
https://doi.org/10.1145/3488932.3524127
https://www.phoronix.com/news/Intel-Shadow-Stack-Linux-6.6
https://www.phoronix.com/news/Intel-Shadow-Stack-Linux-6.6
https://www.phoronix.com/news/Glibc-Intel-CET-Shadow-Stack
https://www.phoronix.com/news/Glibc-Intel-CET-Shadow-Stack
https://lists.llvm.org/pipermail/cfe-dev/2017-April/053662.html
https://lists.llvm.org/pipermail/cfe-dev/2017-April/053662.html
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1315245.1315313
https://heartbleed.com/
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/SP.2013.13
https://github.com/riscv/riscv-isa-manual/releases/tag/riscv-isa-release-ade2bfb-2024-11-28
https://github.com/riscv/riscv-isa-manual/releases/tag/riscv-isa-release-ade2bfb-2024-11-28
https://learn.microsoft.com/en-us/cpp/build/reference/gs-buffer-security-check?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/gs-buffer-security-check?view=msvc-170
https://doi.org/10.14722/ndss.2022.24031
https://doi.org/10.14722/ndss.2022.24031
https://doi.org/10.14722/ndss.2022.24031
https://doi.org/10.14722/ndss.2022.24031

	Do we still need canaries in the coal mine? Measuring shadow stack effectiveness in countering stack smashing

