
Motivation:

• Run-time attacks corrupt memory, alter behavior, or crash the application

• One malicious request can deny service to all clients

• Volatile application state is lost if the application crashes

Challenges:

• Conventional error handling not sufficient as attacks can alter behavior

• Data in memory may already be corrupt when an attack is detected

• Solution must be efficient, robust and be adaptable to new attacks

Unlimited Lives: Secure In-Process Rollback with
Isolated Domains

Merve Turhan¹ ², Thomas Nyman¹, Christoph Baumann¹, Jan Tobias Muehlberg²

¹Ericsson, ²KU Leuven, Belgium

 merve.turhan@kuleuven.be

How to improve the resilience of long-running software against run-time attacks?

Allows developer to create isolated domains within application

Analogy:

• Software exceptions that capture memory errors within isolated domain

What can be isolated within an application?

●Subroutine in main application,
e.g., C function that processes unsanitized input

●Libraries with possible memory vulnerabilities

●Library that handles sensitive information,
e.g., cryptographic keys in OpenSSL

What errors can be detected?

●Stack overflows, heap overflow, domain violations

●Leverage different pre-existing detection mechanisms
e.g., stack canaries, CFI, ASLR and more

Our contribution:

• Rollback mechanism that recovers the execution state of the program
to a state in which allocated memory is free from corruption

Requirements:

• We compartmentalize the application into distinct domains

• A memory defect within a domain must only affect that domain’s
memory, not the memory of other domains

• We leverage hardware-assisted software fault isolation (SFI) based on
Protection Keys for Userspace in COTS processors (Intel, AMD)

Implementation: Library for Secure Domain RollBack (SDRoB)

We present secure in-process rollback, an approach for recovering vulnerable
applications after an attack is detected

Example Case Study: Memcached

• Memcached is a multithreaded memory object
caching system with no persistent storage.

• A malicious request that crashes any thread causes
cache database to be lost

• SDRoB can make Memcached resilient against
malicious requests and recover without affecting
benign clients

Changes in Memcached:
• Each client event is run in separate nested domain
• If any event corrupted, connection is closed, the

nested domain rollback to prior good state

Reasonable performance overhead : 3.0% – 7.3%

Performance impact of the isolation mechanism:

Abnormal Domain Exits
Latency

Memcached Container
Restart Time

3.46 µs ±0.9µs 400000µs ± 19000µs

Rollback performance:

https://arxiv.org/pdf/2205.03205.pdf

The character illustration © Semanur Gulmez

number of threads

