DEPARTMENT OF
KU LEUVEN COMPUTER SCIENCE

Unllmlted Lives: Secure In-Process Rollback W|th
Isolated Domains

Merve Turhan?! 2, Thomas Nyman?, Christoph Baumann?, Jan Tobias Muehlberg?
lEricsson, 2KU Leuven, Belgium

[l

M merve.turhan@kuleuven.be https://arxiv.org/pdf/2205.03205.pdf

How to improve the resilience of long-running software against run-time attacks?

We present secure in-process rollback, an approach for recovering vulnerable
applications after an attack is detected

Motivation: Our contribution:

* Run-time attacks corrupt memory, alter behavior, or crash the application ||+ Rollback mechanism that recovers the execution state of the program
. One malicious request can deny service to all clients to a state in which allocated memory is free from corruption

» Volatile application state is lost if the application crashes
Requirements:

Challenges: « We compartmentalize the application into distinct domains

« Conventional error handling not sufficient as attacks can alter behavior * A memory defect within a domain must only affect that domain’s

: . memory, not the memory of other domains
* Data in memory may already be corrupt when an attack is detected y y

* We leverage hardware-assisted software fault isolation (SFI) based on

 Solution must be efficient, robust and be adaptable to new attacks Protection Keys for Userspace in COTS processors (Intel, AMD)

Implementation: Library for Secure Domain RollBack (SDRoB)

Allows developer to create isolated domains within application

Analogy: Parent Domain Nested Domain
« Software exceptions that capture memory errors within isolated domain : Create :
Intercept —> Nested —> Save — Domain — |nvoke F
Callto F Domain Caller Transition
What can be isolated within an application?

» Subroutine in main application,
e.g., C function that processes unsanitized input

W . - Normal :
* Libraries with possible memory vulnerabilities | e TDOW!:'I“ 0.
e Library that handles sensitive information, Domain Exit ransTtion
e.g., cryptographic keys in OpenSSL ves
What errors can be detected? Abnormal Domain Catch
- - 1_ .y ® *_
« Stack overflows, heap overflow, domain violations Domain Exit Transition Fault
 Leverage different pre-existing detection mechanisms
e.g., stack canaries, CFI, ASLR and more
Example Case Study: Memcached
% —— Rollback performance:
* Memcached is a multithreaded memory object LN | [mant ] worker 7. N~ Abnormal Domain Exits | Memcached Container
caching system with no persistent storage. I 5 | Latency Restart Time
2 e pandier) | 3.46 us +0.9us 400000us + 19000ps

* A malicious request that crashes any thread causes
cache database to be lost

I
i 3 Sdfﬂh_i”itﬂl} Mested Damain D l

Performance impact of the isolation mechanism:

|
"4 copy conn buffer

e SDRoB can make Memcached resilient against | ; e T e s %:;:;:’

' 6 drive_maching() | w7z baseline #77 baseline %.:.:

---
QQQ
lll

malicious requests and recover without affecting < | oo | it | - j gt

#HEH sdrob

alt /J [Hormal Domain Exit]
i

benign clients

.....
......
......
000

—
L
(=3
=3
4
=]

T sdrob_exit()

I
'8 update conn buffer

AL

000
........
.........
........
...

LAAAEE

OOO

LAAS e

|
9 update database

Throughput (ops/sec)
Throughput (ops/sec)

Changes in Memcached:

* Eachclienteventis run in separate nested domain

« If any event corrupted, connection is closed, the
nested domain rollback to prior good state

OOO
e e T
...
LA RS
000

1

i et
10 sdrob_deinit) ! | 0000 | (et
>i |

aee 11 senni 1] UL = s

..........

OOOOOOOO
...
...
...
...

I
1 Fespond
|

...
...

‘ 1 - 2 . 4 - 8 - . 1 = 2 - 4 = 8 '
LOADING PHASE RUNNING PHASE
number of threads

Reasonable performance overhead : 3.0% — 7.3%

KU Leuven

=——=———— Department of Computer Science
E Celestijnenlaan 200A box 2402 HOSTS D I St r I N t ER'CSSON

3001 Leuven, Belgium

The character illustration © Semanur Gulmez



