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How to improve the resilience of long-running software against run-time attacks?

We present secure in-process rollback, an approach for recovering vulnerable
applications after an attack is detected

Motivation: Our contribution:

* Run-time attacks corrupt memory, alter behavior, or crash the application ||+ Rollback mechanism that recovers the execution state of the program
. One malicious request can deny service to all clients to a state in which allocated memory is free from corruption

» Volatile application state is lost if the application crashes
Requirements:

Challenges: « We compartmentalize the application into distinct domains

« Conventional error handling not sufficient as attacks can alter behavior * A memory defect within a domain must only affect that domain’s

: . memory, not the memory of other domains
* Data in memory may already be corrupt when an attack is detected y y

* We leverage hardware-assisted software fault isolation (SFI) based on

 Solution must be efficient, robust and be adaptable to new attacks Protection Keys for Userspace in COTS processors (Intel, AMD)

Implementation: Library for Secure Domain RollBack (SDRoB)

Allows developer to create isolated domains within application

Analogy: Parent Domain Nested Domain
« Software exceptions that capture memory errors within isolated domain : Create :
Intercept —> Nested —> Save — Domain — |nvoke F
Callto F Domain Caller Transition
What can be isolated within an application?

» Subroutine in main application,
e.g., C function that processes unsanitized input

W . - Normal :
* Libraries with possible memory vulnerabilities | e TDOW!:'I“ 0.
e Library that handles sensitive information, Domain Exit ransTtion
e.g., cryptographic keys in OpenSSL ves
What errors can be detected? Abnormal Domain Catch
- - 1_ .y ® *_
« Stack overflows, heap overflow, domain violations Domain Exit Transition Fault
 Leverage different pre-existing detection mechanisms
e.g., stack canaries, CFI, ASLR and more
Example Case Study: Memcached
% —— Rollback performance:
* Memcached is a multithreaded memory object LN | [mant ] worker 7. N~ Abnormal Domain Exits | Memcached Container
caching system with no persistent storage. I 5 | Latency Restart Time
2 e pandier) | 3.46 us +0.9us 400000us + 19000ps

* A malicious request that crashes any thread causes
cache database to be lost
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Performance impact of the isolation mechanism:
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Changes in Memcached:

* Eachclienteventis run in separate nested domain

« If any event corrupted, connection is closed, the
nested domain rollback to prior good state
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Reasonable performance overhead : 3.0% — 7.3%
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